江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省姜堰區(qū)張甸、港口初級中學(xué)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度2.下列“慢行通過,注意危險,禁止行人通行,禁止非機(jī)動車通行”四個交通標(biāo)志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.3.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④4.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動到點(diǎn)A,圖2是點(diǎn)P運(yùn)動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.245.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個6.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣27.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.8.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應(yīng)的密文為a+2b,2a-b,例如:明文1,2對應(yīng)的密文是5,0,當(dāng)接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.10.一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥311.如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.312.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為a,則a的值是____.14.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.15.如圖,在矩形ABCD中,E、F分別是AD、CD的中點(diǎn),沿著BE將△ABE折疊,點(diǎn)A剛好落在BF上,若AB=2,則AD=________.16.如圖,將矩形ABCD繞點(diǎn)C沿順時針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.17.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.18.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB>AC,點(diǎn)D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點(diǎn)E;(尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若BC=5,點(diǎn)D是AC的中點(diǎn),求DE的長.20.(6分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn)E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).21.(6分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時,求圖案中陰影部分正六邊形的面積.22.(8分)某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.請結(jié)合以上信息解答下列問題:m=;請補(bǔ)全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為;已知該校共有1200名學(xué)生,請你估計該校約有名學(xué)生最喜愛足球活動.23.(8分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長為xm設(shè)垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.24.(10分)今年5月份,某校九年級學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組

分?jǐn)?shù)段(分)

頻數(shù)

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學(xué)生人數(shù)和m的值;(2)直接學(xué)出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分?jǐn)?shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級進(jìn)行經(jīng)驗(yàn)交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.25.(10分)(1)解不等式組:;(2)解方程:.26.(12分)如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C,過點(diǎn)C作CD∥x軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD,已知點(diǎn)A坐標(biāo)為(-1,0).求該拋物線的解析式;求梯形COBD的面積.27.(12分)目前節(jié)能燈在城市已基本普及,今年某省面向農(nóng)村地區(qū)推廣,為響應(yīng)號召,某商場用3300元購進(jìn)節(jié)能燈100只,這兩種節(jié)能燈的進(jìn)價、售價如表:進(jìn)價元只售價元只甲種節(jié)能燈3040乙種節(jié)能燈3550求甲、乙兩種節(jié)能燈各進(jìn)多少只?全部售完100只節(jié)能燈后,該商場獲利多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:從一條平行線上的任意一點(diǎn)到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據(jù)平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點(diǎn)睛:本題考查了平行線之間的距離,屬于基礎(chǔ)題,關(guān)鍵是掌握平行線之間距離的定義.2、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得出答案.【詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.3、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0。∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確。∵二次函數(shù)y=∴圖象與x軸的另一個交點(diǎn)的坐標(biāo)是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤。∵二次函數(shù)y=∴點(diǎn)(﹣5,y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),∵當(dāng)x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。4、B【解析】

根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動時,此時BP不斷增大,而從C向A運(yùn)動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動時,此時BP不斷增大,

由圖象可知:點(diǎn)P從B向C運(yùn)動時,BP的最大值為5,即BC=5,

由于M是曲線部分的最低點(diǎn),

∴此時BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點(diǎn)睛】本題考查動點(diǎn)問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長度,本題屬于中等題型.5、C【解析】

首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點(diǎn)中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點(diǎn)的坐標(biāo)來進(jìn)行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當(dāng)x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側(cè),則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點(diǎn)睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點(diǎn),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識點(diǎn)的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負(fù)是解此題的關(guān)鍵.6、D【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【詳解】設(shè)方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實(shí)數(shù)根互為相反數(shù),

∴x1+x1,=-(k1-4)=0,解得k=±1,

當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實(shí)數(shù)根,所以k=1舍去;

當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實(shí)數(shù)根;

∴k=-1.

故選D.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.7、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點(diǎn)睛】本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡單組合體的三視圖,準(zhǔn)確把握觀察角度是解題關(guān)鍵.8、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.9、B【解析】試題分析:作點(diǎn)P關(guān)于OA對稱的點(diǎn)P3,作點(diǎn)P關(guān)于OB對稱的點(diǎn)P3,連接P3P3,與OA交于點(diǎn)M,與OB交于點(diǎn)N,此時△PMN的周長最?。删€段垂直平分線性質(zhì)可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點(diǎn):3.線段垂直平分線性質(zhì);3.軸對稱作圖.10、C【解析】試題解析:一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.11、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.12、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點(diǎn)睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長,利用勾股定理求出斜邊的長,即知表示0的點(diǎn)和A之間的線段的長,進(jìn)而可推出A的坐標(biāo).【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點(diǎn)睛】此題主要考查了實(shí)數(shù)與數(shù)軸之間的對應(yīng)關(guān)系,其中主要利用了:已知兩點(diǎn)間的距離,求較大的數(shù),就用較小的數(shù)加上兩點(diǎn)間的距離.14、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點(diǎn):勾股定理15、【解析】如圖,連接EF,∵點(diǎn)E、點(diǎn)F是AD、DC的中點(diǎn),∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點(diǎn)睛:本題考查了翻折變換的知識,解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.16、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為17、【解析】

利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點(diǎn)睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.18、【解析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點(diǎn):1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)【解析】

(1)根據(jù)作一個角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因?yàn)镈是AC的中點(diǎn),可證DE為△ABC的中位線,從而運(yùn)用三角形中位線的性質(zhì)求解.【詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點(diǎn)D是AC的中點(diǎn),∴DE為△ABC的中位線,∴DE=BC=.20、(1)見解析;(2)40°.【解析】

(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進(jìn)而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進(jìn)而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點(diǎn)睛】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關(guān)鍵是:(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.21、(1)如圖所示見解析,(2)當(dāng)半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點(diǎn),如圖所示,連接所得六等分點(diǎn),作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.22、(1)150,(2)36°,(3)1.【解析】

(1)根據(jù)圖中信息列式計算即可;(2)求得“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖即可;(3)360°×乒乓球”所占的百分比即可得到結(jié)論;(4)根據(jù)題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖如圖所示;(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學(xué)生最喜愛足球活動.故答案為150,36°,1.【點(diǎn)睛】本題考查了條形統(tǒng)計圖,觀察條形統(tǒng)計圖、扇形統(tǒng)計圖獲得有效信息是解題關(guān)鍵.23、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點(diǎn)式后利用二次函數(shù)的性質(zhì)求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設(shè)菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當(dāng)x<25時,S隨x的增大而增大.∵x≤24,∴當(dāng)x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點(diǎn)睛】本題主要考查二次函數(shù)和一元二次方程的應(yīng)用,解題的關(guān)鍵是將實(shí)際問題轉(zhuǎn)化為一元二次方程和二次函數(shù)的問題.24、(1)50,18;(2)中位數(shù)落在51﹣56分?jǐn)?shù)段;(3).【解析】

(1)利用C分?jǐn)?shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進(jìn)而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學(xué)生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學(xué)生人數(shù):50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分?jǐn)?shù)段;(3)如圖所示:將男

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論