版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省樂清市白象中學(xué)2024屆高三一診考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.2.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.3.已知集合,集合,則等于()A. B.C. D.4.函數(shù)的部分圖象大致是()A. B.C. D.5.已知邊長為4的菱形,,為的中點,為平面內(nèi)一點,若,則()A.16 B.14 C.12 D.86.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3207.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.128.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.9.若向量,則()A.30 B.31 C.32 D.3310.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.11.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.812.已知,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等比數(shù)列,,則__________.14.已知,,且,若恒成立,則實數(shù)的取值范圍是____.15.在數(shù)列中,,則數(shù)列的通項公式_____.16.已知等差數(shù)列的前n項和為,,,則=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,問張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.18.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.20.(12分)某社區(qū)服務(wù)中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關(guān).如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學(xué)期望的取值范圍?21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.2、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.3、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.4、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調(diào)性,極值點等排除選項.5、B【解析】
取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結(jié)果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關(guān)鍵是能夠?qū)⑺笙蛄窟M行拆解,進而利用平面向量數(shù)量積的運算性質(zhì)進行求解.6、C【解析】
首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關(guān)鍵,屬于基礎(chǔ)題.7、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B8、C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復(fù)試驗的公式得到結(jié)果.【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,考查獨立重復(fù)試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復(fù)試驗,利用公式做出結(jié)果,屬于中檔題.9、C【解析】
先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.10、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應(yīng)的事件有哪些結(jié)果,從而得到對應(yīng)的概率的大小,再者就是對隨機變量的值要分清,對應(yīng)的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應(yīng)的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關(guān)隨機事件的概率以及對應(yīng)的期望的問題,在解題的過程中,需要對其對應(yīng)的事件弄明白,對應(yīng)的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.11、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.12、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對數(shù)式比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.14、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值15、【解析】
由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當為奇數(shù)時,,當為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.【點睛】本題考查求數(shù)列的通項公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結(jié)果是分段函數(shù)形式.16、【解析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【詳解】設(shè)公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學(xué)期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,所以要想領(lǐng)取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設(shè)事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學(xué)期望等概率與統(tǒng)計的基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應(yīng)用意識.18、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學(xué)生的計算能力,解決此類問題最關(guān)鍵是準確寫出點的坐標,是一道中檔題.19、(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調(diào)遞增,當時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當時,.又由上式得,當時,,,.因此不等式(*)均成立.令(),則,(i)若時,當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當時,此時,,,則需由(*)知,,(當且僅當時等號成立),所以.②當時,此時,,則當時,(由(*)知);當時,(由(*)知).故對于任意,.綜上述:.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1)見解析;(2)【解析】
(1)X的可能取值為300,500,600,結(jié)合題意及表格數(shù)據(jù)計算對應(yīng)概率,即得解;(2)由題意得,分,及,分別得到y(tǒng)與n的函數(shù)關(guān)系式,得到對應(yīng)的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600故:六月份這種酸奶一天的需求量(單位:瓶)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江海洋大學(xué)《電機學(xué)2》2023-2024學(xué)年第一學(xué)期期末試卷
- 高性能纖維防護制品研發(fā)生產(chǎn)項目可行性研究報告寫作模板-備案審批
- 中國計量大學(xué)現(xiàn)代科技學(xué)院《控制電機》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央財經(jīng)大學(xué)《航空自動化控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)師生讀書評價制度
- 昭通職業(yè)學(xué)院《臨床藥理學(xué)(醫(yī)學(xué)檢驗)》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南現(xiàn)代職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)思維與決策》2023-2024學(xué)年第一學(xué)期期末試卷
- 企業(yè)市值管理中資本結(jié)構(gòu)優(yōu)化的研究
- 合規(guī)性旅游業(yè)務(wù)培訓(xùn)模板
- DB2201T 65.1-2024 肉牛飼養(yǎng)技術(shù)規(guī)范 第1部分:種牛
- 公路工程勘察設(shè)計投標方案(技術(shù)方案)
- 培訓(xùn)透平發(fā)電機
- 人教版九年級物理全一冊 20.2電生磁同步練習(xí)(含答案)
- 小收納 大世界-整理與收納知到章節(jié)答案智慧樹2023年黑龍江幼兒師范高等??茖W(xué)校
- 冷凝水的管理
- 讓我們的家更美好教案人教部編版道德與法治五年級下冊
- 鋼筋直螺紋機械連接安裝質(zhì)量檢查記錄表
- 大宗商品交易管理辦法
- 銀行分管財務(wù)副行長個人述職報告4篇全文
- 年終頒獎PPT模板
- 7.6用銳角三角函數(shù)解決問題(3)
評論
0/150
提交評論