四川省成都市溫江區(qū)2024年高三下學期一??荚嚁祵W試題含解析_第1頁
四川省成都市溫江區(qū)2024年高三下學期一模考試數學試題含解析_第2頁
四川省成都市溫江區(qū)2024年高三下學期一模考試數學試題含解析_第3頁
四川省成都市溫江區(qū)2024年高三下學期一??荚嚁祵W試題含解析_第4頁
四川省成都市溫江區(qū)2024年高三下學期一??荚嚁祵W試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都市溫江區(qū)2024年高三下學期一??荚嚁祵W試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知函數是定義在上的偶函數,當時,,則,,的大小關系為()A. B. C. D.3.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.4.已知二次函數的部分圖象如圖所示,則函數的零點所在區(qū)間為()A. B. C. D.5.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.26.已知是雙曲線的左、右焦點,若點關于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.7.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數的取值范圍是()A. B. C. D.8.已知復數z滿足(其中i為虛數單位),則復數z的虛部是()A. B.1 C. D.i9.設為虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b11.已知,滿足約束條件,則的最大值為A. B. C. D.12.復數的虛部為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_________.14.定義在上的奇函數滿足,并且當時,則___15.已知函數,則下列結論中正確的是_________.①是周期函數;②的對稱軸方程為,;③在區(qū)間上為增函數;④方程在區(qū)間有6個根.16.在中,內角的對邊分別為,已知,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.18.(12分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.19.(12分)為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.21.(12分)如圖,三棱柱的側棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.22.(10分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據系數關系來考慮,后者依據兩個條件之間的推出關系,本題屬于中檔題.2、C【解析】

根據函數的奇偶性得,再比較的大小,根據函數的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數的奇偶性的應用、冪、指、對的大小比較,以及根據函數的單調性比較大小,屬于中檔題.3、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.4、B【解析】由函數f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區(qū)間是(0,1),故選B.5、D【解析】

設,,,根據可得①,再根據又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.6、B【解析】

先利用對稱得,根據可得,由幾何性質可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關鍵,屬于中檔題.7、D【解析】

因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.8、A【解析】

由虛數單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數單位i的運算性質、復數的概念,屬于基礎題.9、A【解析】

利用復數的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數除法運算,考查復數對應點所在象限,屬于基礎題.10、B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.11、D【解析】

作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.12、D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據交集的定義即可寫出答案?!驹斀狻浚?,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎題。14、【解析】

根據所給表達式,結合奇函數性質,即可確定函數對稱軸及周期性,進而由的解析式求得的值.【詳解】滿足,由函數對稱性可知關于對稱,且令,代入可得,由奇函數性質可知,所以令,代入可得,所以是以4為周期的周期函數,則當時,所以,所以,故答案為:.【點睛】本題考查了函數奇偶性與對稱性的綜合應用,周期函數的判斷及應用,屬于中檔題.15、①②④【解析】

由函數,對選項逐個驗證即得答案.【詳解】函數,是周期函數,最小正周期為,故①正確;當或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當時,,此時在上單調遞減,在上單調遞增,在區(qū)間上不是增函數,故③錯誤;作出函數的部分圖象,如圖所示方程在區(qū)間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數的性質,屬于中檔題.16、【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)根據中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標系,則,,,,.設平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標求二面角等知識點,屬于一般性題目.18、(1)或;(2)或.【解析】試題分析:(1)根據絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關(3)詳見解析【解析】

(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關.(3)由(2)可知,獲獎的概率為,的可能取值為0,1,2,,,,分布列如下:012數學期望為.【點睛】本題考查頻率分布直方圖、統計案例和離散型隨機變量的分布列與期望,考查學生的閱讀理解能力和計算能力,屬于中檔題.20、(1)(2).【解析】

(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是??碱}型.21、(1)詳見解析;(2).【解析】

(1)根據平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,又平面,所以,根據線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點,且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論