版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省廣元市重點中學2023-2024學年高三適應性調(diào)研考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%2.函數(shù)的值域為()A. B. C. D.3.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.4.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.5.復數(shù)的共軛復數(shù)為()A. B. C. D.6.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.107.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.8.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件10.中,點在邊上,平分,若,,,,則()A. B. C. D.11.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.12.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數(shù)字化網(wǎng)絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.14.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.15.已知,滿足約束條件則的最小值為__________.16.已知數(shù)列的前項和為,,且滿足,則數(shù)列的前10項的和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.18.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.19.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.20.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.22.(10分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由題意故選B.考點:正態(tài)分布2、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.3、C【解析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.4、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據(jù)a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.5、D【解析】
直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).6、C【解析】
取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.7、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關鍵.8、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.10、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.11、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.12、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.14、③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.15、【解析】
畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內(nèi)部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎題.16、1【解析】
由得時,,兩式作差,可求得數(shù)列的通項公式,進一步求出數(shù)列的和.【詳解】解:數(shù)列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數(shù)),故數(shù)列是以為首項,2為公比的等比數(shù)列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數(shù)列的通項公式的求法及應用,數(shù)列的前項和的公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.19、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設軸上存在點,是以為直角頂點的等腰直角三角形,設,,線段的中點為,根據(jù)韋達定理求出點的坐標,再根據(jù),,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設軸上存在點,是以為直角頂點的等腰直角三角形設,,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關系,斜率公式,考查了運算能力和轉(zhuǎn)化能力,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)根據(jù)題意,設直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設的方程為,聯(lián)立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數(shù)的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年亮化工程市場分析報告
- 2023-2028年中國紙品加工行業(yè)市場全景評估及投資前景展望報告
- 2025授權合同范本
- 2025機動車駕駛培訓合同范文
- 2025檔口轉(zhuǎn)租合同范文
- 2025水晶產(chǎn)品購銷合同
- 建筑行業(yè)榆林某污水處理廠區(qū)污水處理施工組織計劃
- 《交通工具的駕駛方法》教案
- 4月份衛(wèi)生保健工作計劃
- 3-6歲兒童學習與發(fā)展指南溫馨提示
- 《新生兒視網(wǎng)膜動靜脈管徑比的形態(tài)學分析及相關性研究》
- 無重大疾病隱瞞保證書
- 2024年春概率論與數(shù)理統(tǒng)計學習通超星期末考試答案章節(jié)答案2024年
- 企業(yè)形象設計(CIS)戰(zhàn)略策劃及實施計劃書
- 2023-2024學年廣西桂林市高二(上)期末數(shù)學試卷(含答案)
- xx公路與天然氣管道交叉方案安全專項評價報告
- 國家職業(yè)技術技能標準 6-31-01-09 工程機械維修工(堆場作業(yè)機械維修工)人社廳發(fā)202226號
- DB11∕T 1077-2020 建筑垃圾運輸車輛標識、監(jiān)控和密閉技術要求
- GB/T 19963.2-2024風電場接入電力系統(tǒng)技術規(guī)定第2部分:海上風電
- 人教版(2024新版)七年級上冊數(shù)學第六章《幾何圖形初步》測試卷(含答案)
- 小學生防性侵安全教育主題班會課件
評論
0/150
提交評論