2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷含解析_第1頁
2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷含解析_第2頁
2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷含解析_第3頁
2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷含解析_第4頁
2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年連云港市重點中學高三第一次模擬考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.92.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1473.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.4.已知向量與的夾角為,,,則()A. B.0 C.0或 D.5.已知函數,若函數有三個零點,則實數的取值范圍是()A. B. C. D.6.若,則的虛部是A.3 B. C. D.7.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.8.已知是虛數單位,則()A. B. C. D.9.已知為等比數列,,,則()A.9 B.-9 C. D.10.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.11.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.36012.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.14.已知數列滿足:,,若對任意的正整數均有,則實數的最大值是_____.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.16.已知復數,且滿足(其中為虛數單位),則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知實數x,y,z滿足,證明:.18.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.19.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.20.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.22.(10分)在平面直角坐標系中,曲線的參數方程為(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數量積運算,掌握基本概念和公式即可解決,屬于簡單題目.2、B【解析】

結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題3、B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B4、B【解析】

由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.5、B【解析】

根據所給函數解析式,畫出函數圖像.結合圖像,分段討論函數的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數,結合導數的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據題意,畫出函數圖像如下圖所示:函數的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數圖像的畫法,函數零點定義及應用,根據零點個數求參數的取值范圍,導數的幾何意義應用,屬于中檔題.6、B【解析】

因為,所以的虛部是.故選B.7、B【解析】

基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.8、B【解析】

根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.9、C【解析】

根據等比數列的下標和性質可求出,便可得出等比數列的公比,再根據等比數列的性質即可求出.【詳解】∵,∴,又,可解得或設等比數列的公比為,則當時,,∴;當時,,∴.故選:C.【點睛】本題主要考查等比數列的性質應用,意在考查學生的數學運算能力,屬于基礎題.10、D【解析】

先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.11、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.12、B【解析】

根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

建系,設,表示出點坐標,則,根據的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設,則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數量積運算,坐標運算,屬于中檔題.14、2【解析】

根據遞推公式可考慮分析,再累加求出關于關于參數的關系,根據表達式的取值分析出,再用數學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數均有.所以.當時,證明:對任意的正整數都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數學歸納法可知,對任意的正整數都有.綜上可知,所求實數的最大值是2.故答案為:2【點睛】本題主要考查了根據數列的遞推公式求解參數最值的問題,需要根據遞推公式累加求解,同時注意結合參數的范圍問題進行分析.屬于難題.15、【解析】

利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.16、【解析】

計算出,兩個復數相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復數的基本運算和概念辨析,需要熟練掌握復數的運算法則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】

已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現,則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.18、(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數的取值范圍為.【點睛】本題考查利用導數證明不等式以及研究函數零點個數問題,考查學生數形結合的思想,是一道中檔題.19、(1);(2)見解析.【解析】

(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.20、(1);(2)見解析.【解析】

(1)根據題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.21、(1)B(2)【解析】

(1)由已知結合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論