版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省洛陽孟津縣聯(lián)考2023-2024學年中考數(shù)學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.世界上最小的開花結果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質量只有0.0000000076克,將數(shù)0.0000000076用科學記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1082.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件3.將(x+3)2﹣(x﹣1)2分解因式的結果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)4.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數(shù)是()A.25° B.30° C.35° D.55°6.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣37.關于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.8.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內不包括邊界的整數(shù)點個數(shù)是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.9.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤110.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個11.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.312.下列計算,正確的是()A.a2?a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當x為_____時,分式的值為1.14.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.15.已知關于x的二次函數(shù)y=x2-2x-2,當a≤x≤a+2時,函數(shù)有最大值1,則a的值為________.16.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.17.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.18.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現(xiàn)裂紋并開始消溶,形狀無一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)20.(6分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.21.(6分)學校決定在學生中開設:A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統(tǒng)計圖,請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)請計算本項調查中喜歡“立定跳遠”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整.(3)若調查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現(xiàn)從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.22.(8分)如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE,CF相交于點D.求證:BE=CF;當四邊形ACDE為菱形時,求BD的長.23.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.24.(10分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.25.(10分)如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知:,,矩形自右向左在直線上平移,當點到達點時,矩形停止運動.在平移過程中,設矩形對角線與半圓的交點為(點為半圓上遠離點的交點).如圖2,若與半圓相切,求的值;如圖3,當與半圓有兩個交點時,求線段的取值范圍;若線段的長為20,直接寫出此時的值.26.(12分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.27.(12分)某學校為弘揚中國傳統(tǒng)詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統(tǒng)計結果繪制成兩幅如圖所示的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計所抽查測試學生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:將0.0000000076用科學計數(shù)法表示為.故選A.【點睛】本題考查了用科學計數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個不為0的數(shù)字前面的0的個數(shù)所決定.2、B【解析】
根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、C【解析】
直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點睛】此題主要考查了公式法分解因式,正確應用平方差公式是解題關鍵.4、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關概念和公式是解題的關鍵.5、C【解析】
根據(jù)平行線的性質即可得到∠3的度數(shù),再根據(jù)三角形內角和定理,即可得到結論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質,熟練掌握平行線的性質是解題的關鍵.6、B【解析】
先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.7、A【解析】
分類討論:當a=5時,原方程變形一元一次方程,有一個實數(shù)解;當a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當a=5時,原方程變形為-4x-1=0,解得x=-;當a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.8、A【解析】
依據(jù)反比例函數(shù)的圖象與性質,即可得到整數(shù)點個數(shù)是5個,進而得到拋物線向上平移5個單位后形成的圖象.【詳解】解:如圖,反比例函數(shù)圖象與坐標軸圍成的區(qū)域內不包括邊界的整數(shù)點個數(shù)是5個,即,
拋物線向上平移5個單位后可得:,即,
形成的圖象是A選項.
故選A.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的圖象、二次函數(shù)的性質與圖象,解答本題的關鍵是明確題意,求出相應的k的值,利用二次函數(shù)圖象的平移規(guī)律進行解答.9、B【解析】
將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關鍵是利用兩個函數(shù)的解析式構成方程,再利用一元二次方程的根與系數(shù)的關系求解.10、A【解析】
根據(jù)二次函數(shù)的性質和圖象可以判斷題目中各個小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號,故①錯誤,
x=-1和x=5時,函數(shù)值相等,故②錯誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當y=-2時,x=1或x=4,故④錯誤,
由圖象可得,當-1<x<5時,y<1,故⑤正確,
故選A.【點睛】考查二次函數(shù)圖象與系數(shù)的關系,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.11、D【解析】
直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.12、C【解析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
分式的值是1的條件是,分子為1,分母不為1.【詳解】∵3x-6=1,
∴x=2,
當x=2時,2x+1≠1.
∴當x=2時,分式的值是1.
故答案為2.【點睛】本題考查的知識點是分式為1的條件,解題關鍵是注意的是分母不能是1.14、【解析】
先利用△ABC為等腰直角三角形得到AB=1,再設圓錐的底面圓的半徑為r,則根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2πr=,然后解方程即可.【詳解】∵⊙O的直徑BC=,
∴AB=BC=1,
設圓錐的底面圓的半徑為r,
則2πr=,解得r=,
即圓錐的底面圓的半徑為米故答案為.15、-1或1【解析】
利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值,結合當a≤x≤a+2時函數(shù)有最大值1,即可得出關于a的一元一次方程,解之即可得出結論.【詳解】解:當y=1時,x2-2x-2=1,
解得:x1=-1,x2=3,
∵當a≤x≤a+2時,函數(shù)有最大值1,
∴a=-1或a+2=3,即a=1.
故答案為-1或1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值是解題的關鍵.16、60°.【解析】
先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點睛】本題考查的是特殊角的三角函數(shù)值及三角形內角和定理,比較簡單.17、1.【解析】
連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.18、360°.【解析】
根據(jù)多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點睛】本題考查的是多邊形的內角和外角,掌握多邊形的外角和等于360°是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】
(1)直接利用銳角三角函數(shù)關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關鍵是添加輔助線,構造直角三角形,記住銳角三角函數(shù)的定義.20、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個交點(,利用雙根式,y=()求二次函數(shù)解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數(shù)與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經常要做坐標軸的垂線,第二步,利用特殊圖形的性質和函數(shù)的性質,往往是解決問題的鑰匙.21、(1)150;(2)詳見解析;(3).【解析】
(1)用A類人數(shù)除以它所占的百分比得到調查的總人數(shù);(2)用總人數(shù)分別減去A、C、D得到B類人數(shù),再計算出它所占的百分比,然后補全兩個統(tǒng)計圖;(3)畫樹狀圖展示所有20種等可能的結果數(shù),再找出剛好抽到不同性別學生的結果數(shù),然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調查了150名學生;(2)喜歡“立定跳遠”學生的人數(shù)為150﹣15﹣60﹣30=45,喜歡“立定跳遠”的學生所占百分比為1﹣20%﹣40%﹣10%=30%,兩個統(tǒng)計圖補充為:(3)畫樹狀圖為:共有20種等可能的結果數(shù),其中剛好抽到不同性別學生的結果數(shù)為12,所以剛好抽到不同性別學生的概率【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.22、(1)證明見解析(2)-1【解析】
(1)先由旋轉的性質得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,從而得出BE=CF;(2)由菱形的性質得到DE=AE=AC=AB=1,AC∥DE,根據(jù)等腰三角形的性質得∠AEB=∠ABE,根據(jù)平行線得性質得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【詳解】(1)∵△AEF是由△ABC繞點A按順時針方向旋轉得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四邊形ACDE為菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE為等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考點:1.旋轉的性質;2.勾股定理;3.菱形的性質.23、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據(jù)相似三角形的性質即可得到結論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.24、(1);(2)【解析】
(1)利用概率公式直接計算即可;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.25、(1);(2);(3)或【解析】
(1)如圖2,連接OP,則DF與半圓相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《建設工程施工合同示范文本》
- 幼兒園健康教案《五官很重要》及教學反思
- 2025年運載火箭控制系統(tǒng)仿真實時處理系統(tǒng)合作協(xié)議書
- 后勤部門工作參考計劃
- 2025年聚甲醛、聚甲醛合金及改性材料項目發(fā)展計劃
- 大型型貨車租賃合同書
- 特別贊助協(xié)議書
- 國際航運船只租賃合同
- 商場租賃合同書
- 2025年古馬隆樹脂項目建議書
- 2025年高考化學二、三輪復習策略講座
- 2022年高考數(shù)學試卷(上海)(秋考)(空白卷)
- 湖南省長沙市2023-2024學年四年級上冊期末數(shù)學試題
- 山東省濟南市語文小升初2024年模擬試題與參考答案
- 裝配式建筑復習試題及答案
- 空氣動力學仿真技術:湍流模型:k-ε湍流模型原理與應用
- 榛子食品深加工生產項目可行性研究報告-2024年重點項目
- 支撐梁拆除安全協(xié)議書
- 2024-2030年中國充血性心力衰竭(CHF)治療設備行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 高中期末考試考風考紀及誠信教育
- 小學語文大單元設計論文
評論
0/150
提交評論