重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷含解析_第1頁
重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷含解析_第2頁
重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷含解析_第3頁
重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷含解析_第4頁
重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

重慶江津長壽巴縣等七校2024年高三下學期第六次檢測數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.2.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切3.設(shè)復數(shù)z=,則|z|=()A. B. C. D.4.已知數(shù)列中,,(),則等于()A. B. C. D.25.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.6.已知,則不等式的解集是()A. B. C. D.7.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.8.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.9.已知是邊長為的正三角形,若,則A. B.C. D.10.已知復數(shù)和復數(shù),則為A. B. C. D.11.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.12.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.15二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若雙曲線經(jīng)過點(3,4),則該雙曲線的準線方程為_____.14.已知函數(shù),若關(guān)于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.15.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設(shè)直線的斜率分別為,若,則_____.16.函數(shù)的圖象在處的切線與直線互相垂直,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.18.(12分)已知數(shù)列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.19.(12分)己知,,.(1)求證:;(2)若,求證:.20.(12分)已知函數(shù)與的圖象關(guān)于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.21.(12分)一張邊長為的正方形薄鋁板(圖甲),點,分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點,制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計)(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.22.(10分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求出導函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.2、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.3、D【解析】

先用復數(shù)的除法運算將復數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數(shù)的基本概念和基本運算,屬于基礎(chǔ)題.4、A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎(chǔ)題.5、D【解析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).6、A【解析】

構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關(guān)于原點對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.7、B【解析】

設(shè),,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉(zhuǎn)化為向量夾角的求解問題.8、C【解析】

由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.9、A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.10、C【解析】

利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關(guān)鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應(yīng)關(guān)系,點的象限和復數(shù)的對應(yīng)關(guān)系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.11、D【解析】

討論,,三種情況,求導得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當時,;當時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應(yīng)用能力.12、A【解析】

根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術(shù)求兩個數(shù)的最大公約數(shù),難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

代入求解得,再求準線方程即可.【詳解】解:雙曲線經(jīng)過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎(chǔ)題.14、【解析】

設(shè),判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設(shè),則在是偶函數(shù),當時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡運算能力和推理能力,屬于難題.15、【解析】

根據(jù)雙曲線上的點的坐標關(guān)系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計算.16、1.【解析】

求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)根據(jù)極坐標與直角坐標互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點對應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對于曲線的極坐標方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設(shè)兩點對應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡得:,則.所以.【點睛】本題主要考查了參數(shù)方程與普通方程,極坐標方程與直角坐標方程的互化,以及直線的參數(shù)方程的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應(yīng)用題中所給的條件,有效利用,再者就是注意應(yīng)用反證法證題的步驟;(2)將式子進行相應(yīng)的代換,結(jié)合不等式的性質(zhì)證得結(jié)果;(3)結(jié)合題中的條件,應(yīng)用反證法求得結(jié)果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關(guān)命題的證明問題,在證題的過程中,注意對題中的條件的等價轉(zhuǎn)化,注意對式子的等價變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.19、(1)證明見解析(2)證明見解析【解析】

(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..20、(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導,求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù),當時,,當時,,且,當時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查導數(shù)的幾何意義和利用導數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計算能力.21、(1),;(2)當值為時,無蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當時,,當,時,,當時,有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當時,取得最大值,無蓋三棱錐容器的容積最大.答:當值為時,無蓋三棱錐容器的容積最大.【點睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓練了利用導數(shù)求最值,屬于中檔題.22、(1);(2)①證明見解析;②能,.【解析】

(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點的坐標.設(shè)點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論