版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆浙江省杭州市余杭區(qū)部分學(xué)校高考數(shù)學(xué)全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.2.函數(shù)在上的圖象大致為()A. B.C. D.3.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-34.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.25.已知集合,則=A. B. C. D.6.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則的值為()A.2 B.3 C.4 D.7.設(shè)函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤8.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.89.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.10.已知函數(shù),,的零點分別為,,,則()A. B.C. D.11.函數(shù)的圖象大致為()A. B.C. D.12.將4名大學(xué)生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標,則點落在圓內(nèi)的概率為______________.14.已知雙曲線的漸近線與準線的一個交點坐標為,則雙曲線的焦距為______.15.已知兩個單位向量滿足,則向量與的夾角為_____________.16.的展開式中,的系數(shù)是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.18.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當時,試判斷的零點個數(shù).19.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經(jīng)過原點的直線與交于兩點,直線的斜率都存在,且,求的值.20.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.22.(10分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.2、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.4、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.6、B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎(chǔ)題.7、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.8、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.9、B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.10、C【解析】
轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.11、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.12、B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.14、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準線的一個交點坐標為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準線的一個交點坐標為”這一條件的運用,另外注意題目中要求的焦距即,容易只計算到,就得到結(jié)論.15、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點睛】本題考查二項式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標系,用空間向量法求空間角.18、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.19、(1)(2)【解析】
(1)不妨設(shè),,計算得到,根據(jù)面積得到,計算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】
(1)根據(jù)頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應(yīng)用,考查離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.21、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.22、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025有關(guān)承攬合同版樣書
- 2025建設(shè)工程安全生產(chǎn)文明施工承包合同書
- 2025標準房屋轉(zhuǎn)租合同范本
- 小學(xué)生數(shù)學(xué)焦慮及心理輔導(dǎo)對策研究
- 教育領(lǐng)域用電規(guī)范操作手冊
- 垃圾分類的衛(wèi)生意義
- 跨文化銷售溝通技巧培訓(xùn)
- 餐飲管理行政后勤工作總結(jié)
- 小學(xué)生語文作文的創(chuàng)新性教學(xué)策略
- 安全知識教育普及提升全民安全意識
- 2023年保安公司副總經(jīng)理年終總結(jié) 保安公司分公司經(jīng)理年終總結(jié)(5篇)
- 中國華能集團公司風(fēng)力發(fā)電場運行導(dǎo)則(馬晉輝20231.1.13)
- 中考語文非連續(xù)性文本閱讀10篇專項練習(xí)及答案
- 2022-2023學(xué)年度六年級數(shù)學(xué)(上冊)寒假作業(yè)【每日一練】
- 法人不承擔(dān)責(zé)任協(xié)議書(3篇)
- 電工工具報價單
- 反歧視程序文件
- 油氣藏類型、典型的相圖特征和識別實例
- 流體靜力學(xué)課件
- 顧客忠誠度論文
- 實驗室安全檢查自查表
評論
0/150
提交評論