上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市盧灣區(qū)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若各項(xiàng)均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.42.設(shè)函數(shù)的定義域?yàn)?,滿足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.3.如圖,正方體中,,,,分別為棱、、、的中點(diǎn),則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線4.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.45.已知函數(shù)的圖像向右平移個(gè)單位長度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.6.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.7.已知曲線的一條對(duì)稱軸方程為,曲線向左平移個(gè)單位長度,得到曲線的一個(gè)對(duì)稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.8.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.9.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.10.已知拋物線:的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或11.已知集合,,則等于()A. B. C. D.12.復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù)滿足,則的最大值為_____.14.已知向量,,,則_________.15.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示,估算月經(jīng)濟(jì)損失的平均數(shù)為,中位數(shù)為n,則_________.16.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過點(diǎn)時(shí),.(1)求拋物線的方程;(2)若,直線與交于點(diǎn),,求直線的斜率.18.(12分)某早餐店對(duì)一款新口味的酸奶進(jìn)行了一段時(shí)間試銷,定價(jià)為元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計(jì)概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計(jì)算時(shí)每個(gè)分組取中間值作為代表,比如銷量為時(shí)看作銷量為瓶).①設(shè)早餐店批發(fā)一大箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量,批發(fā)一小箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量,求和的分布列和數(shù)學(xué)期望;②以利潤作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價(jià);利潤=銷售額-批發(fā)成本.19.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.20.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)已知函數(shù)(1)若恒成立,求實(shí)數(shù)的取值范圍;(2)若方程有兩個(gè)不同實(shí)根,,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由正項(xiàng)等比數(shù)列滿足,即,又,即,運(yùn)算即可得解.【詳解】解:因?yàn)椋?,又,所以,又,解?故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.2、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.3、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因?yàn)?,所以平面,故A正確.因?yàn)?,所以,所以平面故B正確.因?yàn)?,所以平面,故D正確.因?yàn)榕c相交,所以與平面相交,故C錯(cuò)誤.故選:C【點(diǎn)睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.4、C【解析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.5、A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.6、D【解析】

按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.7、C【解析】

在對(duì)稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對(duì)稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對(duì)稱軸.,又..∴平移后曲線為.曲線的一個(gè)對(duì)稱中心為..,注意到故的最小值為.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對(duì)稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運(yùn)算的能力,是一道中檔題.8、A【解析】

由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)?,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.9、D【解析】

先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.10、C【解析】

先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.11、A【解析】

進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】

試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

畫出可行域,解出可行域的頂點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當(dāng)直線過點(diǎn)時(shí)直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點(diǎn)或邊界處取得,所以對(duì)于一般的線性規(guī)劃問題,若可行域是一個(gè)封閉的圖形,我們可以直接解出可行域的頂點(diǎn),然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.15、360【解析】

先計(jì)算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點(diǎn)睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16、【解析】

,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】

(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點(diǎn)的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因?yàn)橹本€的斜率為1,則,所以,因?yàn)?,所以線段中點(diǎn)的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點(diǎn)睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18、;①詳見解析;②應(yīng)該批發(fā)一大箱.【解析】

酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對(duì)立事件概率公式求解即可.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況,分別求出相應(yīng)概率,列出分布列,求出的數(shù)學(xué)期望,若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況,分別求出相應(yīng)概率,由此求出的分布列和數(shù)學(xué)期望;②根據(jù)①中的計(jì)算結(jié)果,,從而早餐應(yīng)該批發(fā)一大箱.【詳解】解:根據(jù)圖中數(shù)據(jù),酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況.當(dāng)銷量為瓶時(shí),利潤為元;當(dāng)銷量為瓶時(shí),利潤為元;當(dāng)銷量為瓶時(shí),利潤為元;當(dāng)銷量為瓶時(shí),利潤為元.隨機(jī)變量的分布列為所以(元)若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況.當(dāng)銷量為瓶時(shí),利潤為元;當(dāng)銷量為瓶時(shí),利潤為元.隨機(jī)變量的分布列為所以(元).②根據(jù)①中的計(jì)算結(jié)果,,所以早餐店應(yīng)該批發(fā)一大箱.【點(diǎn)睛】本題考查概率,離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),屬于中檔題.19、(1);(2)見解析.【解析】

(1)將轉(zhuǎn)化為對(duì)任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可得,即,即可證出.【詳解】函數(shù)的定義域?yàn)?,因?yàn)閷?duì)任意恒成立,即對(duì)任意恒成立,令,則,當(dāng)時(shí),,故在上單調(diào)遞增,又,所以當(dāng)時(shí),,不符合題意;當(dāng)時(shí),令得,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時(shí)恒成立,則只需,即,令,,所以,當(dāng)時(shí),;當(dāng)時(shí),,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當(dāng),時(shí),即在上單調(diào)遞增;又,,所以,使得,當(dāng)時(shí),;當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對(duì)函數(shù)的單調(diào)性的考查,同時(shí)考查轉(zhuǎn)化與化歸的思想,屬于中檔題.20、(1)見解析(2)【解析】

(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問題,屬于中檔題.21、(1)見解析(2)【解析】

(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進(jìn)而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標(biāo)原點(diǎn),MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論