遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷含解析_第1頁
遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷含解析_第2頁
遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷含解析_第3頁
遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷含解析_第4頁
遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省本溪滿族自治區(qū)高級(jí)中學(xué)2024屆高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15602.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.4.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.6.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離7.已知在中,角的對(duì)邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.8.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.9.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.10.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.11.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.周期為 D.在上是增函數(shù)12.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列遞增的等比數(shù)列,若,,則______.14.已知多項(xiàng)式滿足,則_________,__________.15.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.16.已知數(shù)列為等比數(shù)列,,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),,其中.(1)當(dāng)時(shí),求的值;(2)對(duì),證明:恒為定值.18.(12分)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.19.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值20.(12分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.22.(10分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.2、C【解析】

先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.3、C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾担杂?,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.4、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5、C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.6、B【解析】化簡(jiǎn)圓M:x2+(y-a)2=a又N(1,1),r7、C【解析】

求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.8、D【解析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時(shí)求解參數(shù)問題,考查學(xué)生的分析問題的能力和計(jì)算求解的能力,難度較難.9、B【解析】

先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.10、D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.11、D【解析】

當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).12、A【解析】

設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進(jìn)而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計(jì)算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.

故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式,屬于基礎(chǔ)題.14、【解析】∵多項(xiàng)式滿足∴令,得,則∴∴該多項(xiàng)式的一次項(xiàng)系數(shù)為∴∴∴令,得故答案為5,7215、【解析】

根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】因?yàn)椋?,又故切線方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.16、81【解析】

設(shè)數(shù)列的公比為,利用等比數(shù)列通項(xiàng)公式求出,代入等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因?yàn)?,由等比?shù)列通項(xiàng)公式可得,,解得,由等比數(shù)列通項(xiàng)公式可得,.故答案為:【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1(2)1【解析】分析:(1)當(dāng)時(shí)可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當(dāng)時(shí),,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點(diǎn)睛:本題考查組合數(shù)的有關(guān)運(yùn)算,解題時(shí)要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運(yùn)算量較大,解題時(shí)要注意運(yùn)算的準(zhǔn)確性,避免出現(xiàn)錯(cuò)誤.18、(1);(2).【解析】

(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長(zhǎng),根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【點(diǎn)睛】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.19、(1);(2)【解析】

(1)由得,兩式相減可得是從第二項(xiàng)開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)?,,兩式相減得:,即,是從第二項(xiàng)開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.20、(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時(shí),的面積有最大值4.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.21、(1)或;(2)【解析】

(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時(shí),原不等式可化為.①當(dāng)時(shí),則,所以;②當(dāng)時(shí),則,所以;⑧當(dāng)時(shí),則,所以.綜上所述:當(dāng)時(shí),不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查零點(diǎn)分段求解含絕對(duì)值不等式,熟練使用分類討論的方法,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論