




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省西華縣2024屆高三第四次模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.3.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種4.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或5.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.6.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.17.集合,,則=()A. B.C. D.8.若,,,則下列結論正確的是()A. B. C. D.9.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.10.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線11.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.12.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則實數(shù)的取值范圍為__________.14.我國古代數(shù)學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?”設人數(shù)、物價分別為、,滿足,則_____,_____.15.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.16.若,i為虛數(shù)單位,則正實數(shù)的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.18.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?19.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.22.(10分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標分別為,目標函數(shù)的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,屬于中檔題.2、A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導數(shù)為0的點,再判斷導數(shù)為0的點的左、右兩側的導數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側的符號―→下結論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側的導數(shù)值符號相反.3、C【解析】
根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數(shù)原理問題,屬于基礎題.4、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.5、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.6、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.7、C【解析】
先化簡集合A,B,結合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關鍵化簡集合A,B,難度較小.8、D【解析】
根據(jù)指數(shù)函數(shù)的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.9、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.10、C【解析】
根據(jù)條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關鍵.11、B【解析】
求出的表達式,畫出函數(shù)圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉化思想和數(shù)形結合思想,屬于中檔題.12、A【解析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結合五點法作圖求解.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調遞減,利用偶函數(shù)性質和單調性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調遞增,在上單調遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調性解不等式.函數(shù)奇偶性的常用結論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調性.14、【解析】
利用已知條件,通過求解方程組即可得到結果.【詳解】設人數(shù)、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數(shù)與方程的應用,方程組的求解,考查計算能力,屬于基礎題.15、【解析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.16、【解析】
利用復數(shù)模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質,考查推理能力與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)用數(shù)學歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學歸納法證明數(shù)列是等差數(shù)列,假設成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設,,∴是一個整數(shù),∴,從而又當時,有,綜上,的最小值為.【點睛】本題主要考查由遞推關系得通項公式和等差數(shù)列的性質,關鍵是利用數(shù)學歸納法證明數(shù)列是等差數(shù)列,屬于難題.18、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)取中點,連接,,證明平面,由線面垂直的性質可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【點睛】本題考查線面垂直,考查三棱錐體積的計算,解題的關鍵是掌握線面垂直的判定與性質,屬于中檔題.20、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質,利用定義求線面角,屬于中檔題.21、(1)證明見詳解;(2)【解析】
(1)取中點,根據(jù),利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設,由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應用,還考查線面角,學會使用建系的方法來
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學校團建活動方案
- 管理學家介紹
- 關于元旦活動策劃方案2025年
- 莫蘭迪配色方案總結與應用
- 線粒體腦病的護理常規(guī)
- 整合網(wǎng)絡營銷與傳統(tǒng)營銷
- 聯(lián)想神州數(shù)碼品牌形象策略書樣本
- 河北省石家莊市名校2025年中考化學試題模擬題及解析(浙江卷)含解析
- 山東石油化工學院《生物醫(yī)藥品》2023-2024學年第二學期期末試卷
- 漳州城市職業(yè)學院《英語演講與辯論理解當代中國》2023-2024學年第二學期期末試卷
- 2024江蘇省常熟市總工會招聘合同制人員7人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 教學課件:苯甲酸重結晶
- 消防設施維保服務投標方案(技術方案)
- (2024年)醫(yī)療法律法規(guī)知識培訓課件
- 大班科學五彩的燈課件
- 2024圖解數(shù)據(jù)分類分級規(guī)則
- 磁盤采購合同
- 對公賬戶注銷委托書
- 兩位數(shù)乘兩位數(shù)進位豎式計算題
- 2023年中國工商銀行天津市分行校園招聘考試真題及答案
- 郵政金融工作述職報告
評論
0/150
提交評論