山東省威海市文登市2023-2024學年中考數學全真模擬試卷含解析_第1頁
山東省威海市文登市2023-2024學年中考數學全真模擬試卷含解析_第2頁
山東省威海市文登市2023-2024學年中考數學全真模擬試卷含解析_第3頁
山東省威海市文登市2023-2024學年中考數學全真模擬試卷含解析_第4頁
山東省威海市文登市2023-2024學年中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省威海市文登市2023-2024學年中考數學全真模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.162.若關于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a<3B.a>3C.a<﹣3D.a>﹣33.下列實數為無理數的是()A.-5 B. C.0 D.π4.若與互為相反數,則x的值是()A.1 B.2 C.3 D.45.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=6.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數根;其中正確的是()A.①③ B.②③ C.③④ D.②④7.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°8.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數是()A.15° B.22.5° C.30° D.45°9.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.10.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐11.4的平方根是()A.16 B.2 C.±2 D.±12.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.用換元法解方程時,如果設,那么原方程化成以為“元”的方程是________.14.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是_____.15.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數是.16.拋物線的頂點坐標是________.17.使有意義的x的取值范圍是______.18.若關于x的方程x2-mx+m=0有兩個相等實數根,則代數式2m2-8m+3的值為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。20.(6分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.21.(6分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當點G落在線段BC上時,求點B經過的路徑長.22.(8分)如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行探究.下面是小東的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012336說明:補全表格時相關數據保留一位小數建立直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:直接寫出周長C的取值范圍是______.23.(8分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.24.(10分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.25.(10分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?26.(12分)某校想了解學生每周的課外閱讀時間情況,隨機調查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數分別直方圖和扇形統(tǒng)計圖:根據圖中提供的信息,解答下列問題:(1)補全頻數分布直方圖(2)求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數27.(12分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.2、B【解析】試題分析:當x=0時,y=-5;當x=1時,y=a-1,函數與x軸在0和1之間有一個交點,則a-1>0,解得:a>1.考點:一元二次方程與函數3、D【解析】

無理數就是無限不循環(huán)小數.理解無理數的概念,一定要同時理解有理數的概念,有理數是整數與分數的統(tǒng)稱.即有限小數和無限循環(huán)小數是有理數,而無限不循環(huán)小數是無理數.由此即可判定選擇項.【詳解】A、﹣5是整數,是有理數,選項錯誤;B、是分數,是有理數,選項錯誤;C、0是整數,是有理數,選項錯誤;D、π是無理數,選項正確.故選D.【點睛】此題主要考查了無理數的定義,其中初中范圍內學習的無理數有:π,2π等;開方開不盡的數;以及像0.1010010001…,等有這樣規(guī)律的數.4、D【解析】由題意得+=0,去分母3x+4(1-x)=0,解得x=4.故選D.5、D【解析】

由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據線段的垂直平分線的性質可得結論,故B正確,不符合題意;

根據相似三角形的判定即可求解,故C正確,不符合題意;

由△BAE∽△ADC,得到CD與AD的大小關系,根據正切函數可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質,解直角三角形,掌握相似三角形的判定方法是解題的關鍵.6、D【解析】

①錯誤.由題意a>1.b>1,c<1,abc<1;

②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;

③錯誤.拋物線與x軸的另一個交點是(1,1);

④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,

∵拋物線交y軸于負半軸,∴c<1,

∵對稱軸在y軸左邊,∴-<1,

∴b>1,

∴abc<1,故①錯誤.

∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,

當ax2+bx+c<mx+n時,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,

拋物線與x軸的另一個交點是(1,1),故③錯誤,

∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,

∴方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.

故選:D.【點睛】本題考查二次函數的性質、二次函數與不等式,二次函數與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數形結合的思想解決問題.7、B【解析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.8、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.9、D【解析】

連接OC、OD、BD,根據點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規(guī)則圖形的面積轉化為求規(guī)則圖形的面積.10、C【解析】試題解析:根據主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據俯視圖是圓可判斷出該幾何體為圓柱.故選C.11、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.12、B【解析】

根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y-【解析】分析:根據換元法,可得答案.詳解:﹣=1時,如果設=y,那么原方程化成以y為“元”的方程是y﹣=1.故答案為y﹣=1.點睛:本題考查了換元法解分式方程,把換元為y是解題的關鍵.14、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、50°.【解析】

根據線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據等腰三角形兩底角相等可得∠C=∠ABC,然后根據三角形的內角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.16、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標是(0,-1),故答案為(0,-1).17、【解析】二次根式有意義的條件.【分析】根據二次根式被開方數必須是非負數的條件,要使在實數范圍內有意義,必須.18、1.【解析】

根據方程的系數結合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結論.【詳解】∵關于x的方程x2﹣mx+m=0有兩個相等實數根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數根”是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)根據概率=所求情況數與總情況數之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復不遺漏的列出所有可能的結果,用到的知識點為:概率=所求:情況數與總情況數之比.20、(1)見解析;(2)2【解析】

(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據AF=CF·tan∠ACF計算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點睛】本題主要考查三角形的性質及三角函數的相關知識,充分利用已知條件靈活運用各種方法求解可得到答案。21、(1)見解析;(2)B點經過的路徑長為π.【解析】

(1)、連接AH,根據旋轉圖形的性質得出AB=AE,∠ABH=∠AEH=90°,根據AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據題意得出∠EAB的度數,然后根據弧長的計算公式得出答案.【詳解】(1)、證明:如圖1中,連接AH,由旋轉可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋轉可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的長為=π,即B點經過的路徑長為π.【點睛】本題主要考查的是旋轉圖形的性質以及扇形的弧長計算公式,屬于中等難度的題型.明白旋轉圖形的性質是解決這個問題的關鍵.22、(1)(2)詳見解析;(3).【解析】

(1)動手操作,細心測量即可求解;(2)利用描點、連線畫出函數圖象即可;(3)根據觀察找到函數值的取值范圍,即可求得△OBC周長C的取值范圍.【詳解】經過測量,時,y值為根據題意,畫出函數圖象如下圖:根據圖象,可以發(fā)現,y的取值范圍為:,,故答案為.【點睛】本題通過學生測量、繪制函數,考查了學生的動手能力,由觀察函數圖象,確定函數的最值,讓學生進一步了解函數的意義.23、(1)y=﹣x2+2x+3;(2)見解析.【解析】

(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.【點睛】本題考查了待定系數法求函數解析式,二次函數的圖像與性質,勾股定理及分類討論的數學思想,熟練掌握待定系數法是解(1)的關鍵,分三種情況討論是解(2)的關鍵.24、2.【解析】

根據勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論