版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省荊州市育苗學(xué)校高一數(shù)學(xué)文下學(xué)期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.若=(x,1),,,則實數(shù)x=()A.0 B.2 C.﹣2 D.2或﹣2參考答案:D【考點】9K:平面向量共線(平行)的坐標(biāo)表示.【分析】根據(jù)題意,由向量平行的坐標(biāo)表示公式可得x2﹣4=0,解可得x的值,即可得答案.【解答】解:根據(jù)題意,=(x,1),,若,則有x2﹣4=0,解可得:x=±2;故選:D.2.設(shè)集合,集合,則(
)A.
B.
C.
D.參考答案:B略3.在同一坐標(biāo)系中,函數(shù)與的圖象之間的關(guān)系是
(
)A.
關(guān)于軸對稱
B.
關(guān)于軸對稱C.
關(guān)于原點對稱
D.
關(guān)于直線對稱參考答案:A4.在△ABC中,A、B、C所對的邊分別是a、b、c,已知,則C=()A. B. C. D.參考答案:D【考點】HS:余弦定理的應(yīng)用.【分析】由已知中△ABC中,A、B、C所對的邊分別是a、b、c,已知,根據(jù)余弦定理,我們可以求出C角的余弦值,進(jìn)而根據(jù)C為三角形內(nèi)角,解三角方程可以求出C角.【解答】解:∵,∴cosC==﹣又∵C為三角形內(nèi)角∴C=故選D5.集合中的角所表示的范圍(陰影部分)是().參考答案:C6.已知為等差數(shù)列,++=105,=99,以表示的前項和,則使得達(dá)到最大值的是(A)21
(B)20
(C)19
(D)18參考答案:B略7.已知點A(2,-3),B(-3,-2)直線l過點P(1,1),且與線段AB相交,則直線l的斜率的取值k范圍是()A.或 B.或C. D.參考答案:A試題分析:畫出圖象如下圖所示,由圖可知,斜率的取值范圍是或,根據(jù)已知兩點的斜率公式,有,所以取值范圍是或.考點:兩條直線位置關(guān)系.8.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為()A. B. C. D.參考答案:D略9.函數(shù)f(x)=(
)A.在、上遞增,在、上遞減B.在、上遞增,在、上遞減C.在、上遞增,在、上遞減D.在、上遞增,在、上遞減參考答案:,在、上遞增,在、上,遞減,故選A10.直線xcosθ+ysinθ+a=0與圓x2+y2=a2交點的個數(shù)是()A.0 B.1 C.隨a變化 D.隨θ變化參考答案:B【考點】J9:直線與圓的位置關(guān)系.【分析】將圓心代入點到直線距離公式,得到圓心到直線xcosθ+ysinθ+a=0的距離d=|a|,可得結(jié)論.【解答】解:圓x2+y2=a2的圓心為原點,半徑為|a|,圓心到直線xcosθ+ysinθ+a=0的距離d=|a|,故直線與圓相切,即直線xcosθ+ysinθ+a=0與圓x2+y2=a2交點的個數(shù)是1個,故選:B.二、填空題:本大題共7小題,每小題4分,共28分11.(5分)=
.參考答案:6考點: 根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運算.專題: 計算題.分析: 將根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪,再由指數(shù)的運算法則統(tǒng)一成底數(shù)為2和3的指數(shù)冪形式,求解即可.解答: ===6故答案為:6點評: 本題考查根式和分?jǐn)?shù)指數(shù)冪的關(guān)系、指數(shù)的運算法則,考查運算能力.12.定義在實數(shù)集R上的函數(shù),如果存在函數(shù)(A、B為常數(shù)),使得對一切實數(shù)都成立,那么稱為函數(shù)的一個承托函數(shù)。給出如下四個結(jié)論:①對于給定的函數(shù),其承托函數(shù)可能不存在,也可能有無數(shù)個;②定義域和值域都是R的函數(shù)不存在承托函數(shù);③為函數(shù)的一個承托函數(shù);④為函數(shù)的一個承托函數(shù)。其中所有正確結(jié)論的序號是____________________.參考答案:①③13.函數(shù)的零點個數(shù)為
.參考答案:1略14..求值:=.參考答案:102【考點】對數(shù)的運算性質(zhì);有理數(shù)指數(shù)冪的化簡求值.【專題】計算題;函數(shù)思想;綜合法;函數(shù)的性質(zhì)及應(yīng)用.【分析】直接利用對數(shù)與指數(shù)的運算法則化簡求解即可.【解答】解:=(lg2)2+(lg5)2+2lg2lg5+1+0.4﹣2×42=1+1+=2+100=102.故答案為:102.【點評】本題考查對數(shù)運算法則以及有理指數(shù)冪的運算法則的應(yīng)用,考查計算能力.15.已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=(x>0),則給出以下四個結(jié)論:①函數(shù)f(x)的值域為[0,1];②函數(shù)f(x)的圖象是一條曲線;③函數(shù)f(x)是(0,+∞)上的減函數(shù);④函數(shù)g(x)=f(x)﹣a有且僅有3個零點時.其中正確的序號為
.參考答案:④【考點】根的存在性及根的個數(shù)判斷;函數(shù)單調(diào)性的判斷與證明.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】通過舉特例,可得①、②、③錯誤;數(shù)形結(jié)合可得④正確,從而得出結(jié)論.【解答】解:由于符號[x]表示不超過x的最大整數(shù),函數(shù)f(x)=(x>0),取x=﹣1.1,則[x]=﹣2,∴f(x)=>1,故①不正確.由于當(dāng)0<x<1,[x]=0,此時f(x)=0;當(dāng)1≤x<2,[x]=1,此時f(x)=;當(dāng)2≤x<3,[x]=2,此時f(x)=,此時<f(x)≤1,當(dāng)3≤x<4,[x]=3,此時f(x)=,此時<g(x)≤1,當(dāng)4≤x<5,[x]=4,此時f(x)=,此時<g(x)≤1,故f(x)的圖象不會是一條曲線,且f(x)不會是(0,+∞)上的減函數(shù),故排除②、③.函數(shù)g(x)=f(x)﹣a有且僅有3個零點時,函數(shù)f(x)的圖象和直線y=a有且僅有3個交點,此時,,故④正確,故答案為:④.【點評】本題主要考查方程的根的存在性及個數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.16.已知則
.參考答案:117.已知函數(shù)y=f(x)的定義域為[-1,5],則在同一坐標(biāo)系中,函數(shù)y=f(x)的圖象與直線的交點個數(shù)為
參考答案:1三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知實數(shù)滿足方程,求(I)的最大值與最小值;(Ⅱ)的最大值與最小值.參考答案:(I),;(Ⅱ),.試題分析:(I)所給的等式表示以為圓心、半徑為的圓,而表示圓上的點和原點連線的斜率,設(shè)為k,則過原點的圓的切線方程為.再根據(jù)圓心到切線的距離等于半徑求得k的值,可得的最大值和最小值;(Ⅱ)由代數(shù)式,可知代數(shù)式表示圓上的點到點的距離,根據(jù)兩點間的距離公式與圓的半徑即可求出的最大值和最小值.試題解析:(I)設(shè),表示圓上點與原點連線的斜率,直線的方程為,當(dāng)直線與圓相切時,斜率取得最值,點到直線的距離,即時,直線與圓相切,所以,.(Ⅱ)代數(shù)式表示圓上點到頂點的距離,圓心與定點的距離為,又圓的半徑是,所以,.考點:圓的一般方程;斜率公式;直線和圓相切的性質(zhì);點到直線的距離公式;兩點間的距離公式.19.已知函數(shù),且求;判斷的奇偶性;試判斷在上的單調(diào)性,并證明。參考答案:略20.已知數(shù)列{an}的前n項和為Sn,a1=1且an+1=2Sn+1(n∈N*);數(shù)列{bn}中,b1=3且對n∈N*,點(bn,bn+1)都在函數(shù)y=x+2的圖象上.(Ⅰ)求數(shù)列{an},{bn}的通項公式;(Ⅱ)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,請說明理由.參考答案:【考點】8K:數(shù)列與不等式的綜合;8H:數(shù)列遞推式.【分析】(Ⅰ)由an+1=2Sn+1(n∈N*),an=2Sn﹣1+1(n∈N*)得an+1﹣an=2a_n,}an+1=3an,即由點(bn,bn+1)都在函數(shù)y=x+2的圖象上.得數(shù)列{bn}是公差為2的等差數(shù)列(Ⅱ)設(shè)數(shù)列{an?bn}的前n項和為Tn,an?bn=(2n+1)3n﹣1利用錯位相減法求得Tn,由題意n?3n>100,得n≥5【解答】解:(Ⅰ)當(dāng)n=1時,a2=2s1+1=3…且an+1=2Sn+1(n∈N*);
①∴當(dāng)n≥2時,an=2Sn﹣1+1(n∈N*);
②…①﹣②得an+1﹣an=2a_n,}an+1=3an即又當(dāng)n=1時,也符合所以數(shù)列{an}是首項為1,公比為3的等比數(shù)列,…∵點(bn,bn+1)都在函數(shù)y=x+2的圖象上∴bn+1=bn+2,bn+1﹣bn=2.所以數(shù)列{bn}是公差為2的等差數(shù)列,bn=3+(n﹣1)×2=2n+1…(Ⅱ)設(shè)數(shù)列{an?bn}的前n項和為Tn,∵an?bn=(2n+1)3n﹣1…∴Tn=3?30+5?31+7?32+…+(2n﹣1)?3n﹣2+(2n+1)?3n﹣1…①3Tn=3?31+5?32+7?33+…+(2n﹣1)3n﹣1+(2n+1)3n…②…①﹣②得:﹣2Tn=3+2(31+32+33+…+3n﹣1)﹣(2n﹣1)?3n=﹣2n?3n∴…由題意n?3n>100n,即3n>100,∴n≥5使得a1b1+a2b2+…+anbn>100n?若存在,n的最小值為5,…21.設(shè)T=.(1)已知sin(p–q)=,q為鈍角,求T的值;(2)已知cos(–q)=m,q為鈍角,求T的值.參考答案:解:(1)由sin(p–q)=,得sinq=.
∵q為鈍角,
∴cosq=–,∴sin2q=2sinqcosq=,T==.(2)由,T==|sinq+cosq|,∵<q<p,
∴當(dāng)<q£時.sinq+cosq>0,∴T=sinq+cosq=m–;∴當(dāng)<q<p時.sinq+cosq<0,
∴T=–(sinq+cosq)=–m+.略22.(14分)某工廠在甲、乙兩地的兩個分工廠各生產(chǎn)某種機(jī)器12臺和6臺,現(xiàn)銷售給A地10臺,B地8臺.已知從甲地調(diào)運1臺至A地、B地的費用分別為400元和800元,從乙地調(diào)運1臺至A地、B地的費用分別為300元和500元.(1)設(shè)從乙地調(diào)運x臺至A地,求總費用y關(guān)于x的函數(shù)關(guān)系式并求定義域;(2)若總費用不超過9000元,則共有幾種調(diào)運方法?(3)求出總費用最低的調(diào)運方案及最低費用.參考答案:考點: 根據(jù)實際問題選擇函數(shù)類型.專題: 應(yīng)用題;函數(shù)的性質(zhì)及應(yīng)用.分析: (1)根據(jù)調(diào)用的總費用=從甲地調(diào)運1臺至A地、B地的費用和,列出函數(shù)關(guān)系式;(2)總費用不超過9000元,讓函數(shù)值小于等于9000求出此時自變量的取值范圍,然后根據(jù)取值范圍來得出符合條件的方案;(3)根據(jù)(1)中的函數(shù)式以及自變量的取值范圍即可得出費用最小的方案.解答: (1)y=300x+(6﹣x)×500+(10﹣x)×400+(2+x)×800=200x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國土壤修復(fù)行業(yè)十三五規(guī)劃及發(fā)展前景展望報告
- 2024全新服務(wù)員工作時長與休息休假合同范本下載3篇
- 2024年版高級管理人員勞動合同書
- 2024年環(huán)保責(zé)任:無鹵物料環(huán)保承諾協(xié)議書3篇
- 眉山藥科職業(yè)學(xué)院《python與數(shù)據(jù)處理基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 馬鞍山職業(yè)技術(shù)學(xué)院《數(shù)字音視頻制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度異地離婚手續(xù)下載及婚姻法律咨詢與服務(wù)合同3篇
- 2024年版水電安裝工程承包合同版B版
- 2024年智慧醫(yī)療信息化軟件委托開發(fā)合同范本2篇
- 2025年南通貨運從業(yè)資格證網(wǎng)上考試答案
- 魔術(shù)表演娛樂行業(yè)研究報告
- 2024風(fēng)電光伏組合箱變技術(shù)規(guī)范
- JT∕T 795-2023 事故汽車修復(fù)技術(shù)規(guī)范
- 趣識古文字智慧樹知到期末考試答案章節(jié)答案2024年吉林師范大學(xué)
- 幼兒園健康領(lǐng)域《臉上的表情》課件
- 二年級乘除法口算題計算練習(xí)大全2000題(可直接打印)
- 格蘭氣吸精量播種機(jī)
- 2024年馬原試題及完整答案(歷年真題)
- 天津在津居住情況承諾書
- 舞臺搭建安全管理與風(fēng)險評估
- MOOC 信息安全-復(fù)旦大學(xué) 中國大學(xué)慕課答案
評論
0/150
提交評論