版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省株洲市茶陵縣二中2024年高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.2.已知,則()A.5 B. C.13 D.3.已知向量,,,若,則()A. B. C. D.4.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.15.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④6.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.7.已知變量,滿足不等式組,則的最小值為()A. B. C. D.8.已知復(fù)數(shù)滿足,則=()A. B.C. D.9.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1010.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-211.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.12.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.100二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.14.設(shè),則_____,(的值為______.15.已知關(guān)于的不等式對(duì)于任意恒成立,則實(shí)數(shù)的取值范圍為_________.16.如圖,在中,,,,點(diǎn)在邊上,且,將射線繞著逆時(shí)針方向旋轉(zhuǎn),并在所得射線上取一點(diǎn),使得,連接,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.18.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.19.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動(dòng)點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)軸時(shí),.(1)求橢圓的方程;(2)延長(zhǎng)分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.20.(12分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.21.(12分)已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說明理由.22.(10分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動(dòng),當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號(hào)抽獎(jiǎng)的方式,抽取了家店鋪進(jìn)行紅包獎(jiǎng)勵(lì).如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
先化簡(jiǎn)復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算,是基礎(chǔ)題.3、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.4、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.5、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.6、D【解析】
作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.7、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.8、B【解析】
利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.9、C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱,計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱,圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱是解題的關(guān)鍵.10、B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.11、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.14、7201【解析】
利用二項(xiàng)展開式的通式可求出;令中的,得兩個(gè)式子,代入可得結(jié)果.【詳解】利用二項(xiàng)式系數(shù)公式,,故,,故(=,故答案為:720;1.【點(diǎn)睛】本題考查二項(xiàng)展開式的通項(xiàng)公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.15、【解析】
先將不等式對(duì)于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對(duì)于任意恒成立,即,又因?yàn)椋?,?duì)任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【點(diǎn)睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.16、【解析】
由余弦定理求得,再結(jié)合正弦定理得,進(jìn)而得,得,則面積可求【詳解】由,得,解得.因?yàn)椋?,,所?又因?yàn)?,所?因?yàn)?,所?故答案為【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,考查運(yùn)算求解能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,且定值為2【解析】
(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線的方程和橢圓方程,求得,由此化簡(jiǎn)求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.18、(1)見解析(2)【解析】
(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進(jìn)而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標(biāo)原點(diǎn),MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因?yàn)槭蔷匦危?,因?yàn)?,所以,又因?yàn)?,,所以平面,所以,又因?yàn)?,所以是中點(diǎn),取中點(diǎn),連結(jié),,因?yàn)槭堑闹悬c(diǎn),則且,所以且,所以四邊形是平行四邊形,所以,又因?yàn)槠矫?,平面,所以平?(圖1)(圖2)(2)因?yàn)?,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個(gè)法向量為,因?yàn)槠矫娴囊粋€(gè)法向量為,則.因?yàn)槎娼菫殁g角,所以二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.19、(1);(2)【解析】
(1)根據(jù)題意直接計(jì)算得到,,得到橢圓方程.(2)不妨設(shè),且,設(shè),代入數(shù)據(jù)化簡(jiǎn)得到,故,得到答案.【詳解】(1),所以,,化簡(jiǎn)得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設(shè),且,設(shè),所以由,得,所以,由,得,代入,化簡(jiǎn)得:,由于,所以,同理可得,所以,所以當(dāng)時(shí),最小為【點(diǎn)睛】本題考查了橢圓方程,橢圓中的向量運(yùn)算和最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點(diǎn)的坐標(biāo),寫出的方程,聯(lián)立與,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)直線,則與直線的交點(diǎn),又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查運(yùn)算求解能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理計(jì)算能力.21、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點(diǎn)的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因?yàn)閳AE為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點(diǎn)C的軌跡為以點(diǎn)A和點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 濰坊鋁合金護(hù)欄施工方案
- 鋁板外立面維護(hù)方案
- 郫縣管網(wǎng)建設(shè)施工方案
- 2025年中國(guó)螺桿膨脹機(jī)行業(yè)發(fā)展監(jiān)測(cè)及投資前景展望報(bào)告
- 2025年中國(guó)補(bǔ)腎養(yǎng)血丸行業(yè)發(fā)展監(jiān)測(cè)及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年點(diǎn)火器配件項(xiàng)目可行性研究報(bào)告
- 牛皮膠原蛋白可行性研究報(bào)告申請(qǐng)建議書
- 餐飲空間改造免租期合同
- 排球館裝修工人合同
- 鮮花綠植配送承諾書
- 2024年中考復(fù)習(xí)-數(shù)學(xué)(廣州專用)(解析版)
- 第三十六屆全國(guó)電力行業(yè)風(fēng)力發(fā)電運(yùn)行檢修職業(yè)技能競(jìng)賽基礎(chǔ)理論題庫(kù)附有答案
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識(shí)題庫(kù)含答案(研優(yōu)卷)
- 科室醫(yī)療質(zhì)量與安全管理小組工作制度
- 中華民族共同體概論課件第五講大一統(tǒng)與中華民族共同體初步形成(秦漢時(shí)期)
- 初二生地會(huì)考試卷及答案-文檔
- 私營(yíng)企業(yè)廉潔培訓(xùn)課件
- 施工單位值班人員安全交底和要求
- 中國(guó)保險(xiǎn)用戶需求趨勢(shì)洞察報(bào)告
- 數(shù)字化轉(zhuǎn)型指南 星展銀行如何成為“全球最佳銀行”
- 中餐烹飪技法大全
評(píng)論
0/150
提交評(píng)論