




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省大理市重點中學2023-2024學年高考數學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.2.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.3.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.4.函數在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.5.A. B. C. D.6.已知函數fx=sinωx+π6+A.16,13 B.17.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.8.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.49.設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.10.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或11.將函數向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區(qū)間上為增函數B.函數最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根12.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.61242二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.14.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數=____。15.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.16.已知數列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數列{}前2020項和為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.18.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.19.(12分)設實數滿足.(1)若,求的取值范圍;(2)若,,求證:.20.(12分)已知函數,.(1)討論函數的單調性;(2)已知在處的切線與軸垂直,若方程有三個實數解、、(),求證:.21.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.22.(10分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.2、C【解析】
根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.3、A【解析】
畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.4、B【解析】
根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.5、A【解析】
直接利用復數代數形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數代數形式的乘除運算,是基礎的計算題.6、A【解析】
將fx整理為3sinωx+π3,根據x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數的值域求解參數范圍的問題,關鍵是能夠結合正弦型函數的圖象求得角的范圍的上下限,從而得到關于參數的不等式.7、D【解析】
說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.8、A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.9、D【解析】
由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據求數列的通項知識可得選項.【詳解】由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數列是以為公比的等比數列,而,所以,∴當時,,故選:D.【點睛】本題考查幾何體中的概率問題,關鍵在于運用遞推的知識,得出相鄰的項的關系,這是常用的方法,屬于難度題.10、A【解析】
根據題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.11、C【解析】
由輔助角公式化簡三角函數式,結合三角函數圖象平移變換即可求得的解析式,結合正弦函數的圖象與性質即可判斷各選項.【詳解】函數,則,將向左平移個單位,可得,由正弦函數的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數式的化簡,三角函數圖象平移變換,正弦函數圖象與性質的綜合應用,屬于中檔題.12、C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是常考題型.14、或1【解析】
利用導數的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數求切線方程,以及直線方程的運用,三角形的面積求法。15、7.5【解析】
分別求出所有人用時總和再除以總人數即可得到平均數.【詳解】故答案為:7.5【點睛】此題考查求平均數,關鍵在于準確計算出所有數據之和,易錯點在于概念辨析不清導致計算出錯.16、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數列{}前2020項和為2(1)=2(1).故答案為:.【點睛】本題考查了向量垂直與數量積的關系、數列遞推關系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.18、(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.19、(1)(2)證明見解析【解析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因為(當且僅當,時取等號).所以成立,故成立.【點睛】本題考查分類討論法解絕對值不等式,基本不等式的應用,屬于中檔題.20、(1)①當時,在單調遞增,②當時,單調遞增區(qū)間為,,單調遞減區(qū)間為(2)證明見解析【解析】
(1)先求解導函數,然后對參數分類討論,分析出每種情況下函數的單調性即可;(2)根據條件先求解出的值,然后構造函數分析出之間的關系,再構造函數分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調遞增②當時,令得,解得,又,∴∴當時,,單調遞增;當時,,單調遞減;當時,,單調遞增.(2)依題意得,,則由(1)得,在單調遞增,在上單調遞減,在上單調遞增∴若方程有三個實數解,則法一:雙偏移法設,則∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞減,∴,即設,∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞增,∴,即∴.法二:直接證明法∵,,在上單調遞增,∴要證,即證設,則∴在上單調遞減,在上單調遞增∴,∴,即(注意:若沒有證明,扣3分)關于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數與倒導數的綜合應用,難度較難.(1)對于含參函數單調性的分析,可通過分析參數的臨界值,由此分類討論函數單調性;(2)利用導
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025租賃公寓轉租合同協(xié)議書
- 2025合同解除補償協(xié)議書
- 2024-2025學年度湖南省株洲世紀星高級中學高二下學期第一次月考歷史試題(含答案)
- 景德鎮(zhèn)市重點中學2025屆高三下學期期中數學試題理試題
- 25年一月份全屋隔音棉驗收補充協(xié)議
- 第5課 隋唐時期的民族交往與交融(課件)-2024-2025學年七年級歷史下冊同步教學課件(統(tǒng)編版2024)
- 助殘委托服務協(xié)議
- 幼兒園常見事故預防和處理
- 李努生:對加強廉政建設的思考
- 2025安全巡查員技能提升合同模板
- 美國地圖高清中文版
- 金屬監(jiān)督監(jiān)理實施細則
- 不銹鋼304焊接工藝評定報告PQR(全氬弧)
- 正確認識汽車太陽膜課件
- 工程建筑給排水外文文獻翻譯1
- 曲線上梁的平分中矢坐標計算方法解讀
- DB4201∕T 646-2021 軌道交通工程運營期結構監(jiān)測技術規(guī)程
- 200句話搞定上海中考單詞(精華版)
- 船舶輔鍋爐的自動控制系統(tǒng)分析
- 第三章第四節(jié)2--厚壁圓筒-應力
- 建設工程監(jiān)理費計算器
評論
0/150
提交評論