




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省咸陽(yáng)百靈中學(xué)2024屆高考數(shù)學(xué)五模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.2.已知,且,則()A. B. C. D.3.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.4.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過(guò)F作AF的垂線與雙曲線交于B,C兩點(diǎn),過(guò)B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于7.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或98.設(shè),,則()A. B.C. D.9.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.810.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為()A. B.C. D.11.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.12.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)在直線上,則的值等于______________.14.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),則的值是.15.設(shè),則“”是“”的__________條件.16.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)新高考,取消文理科,實(shí)行“”,成績(jī)由語(yǔ)文、數(shù)學(xué)、外語(yǔ)統(tǒng)一高考成績(jī)和自主選考的3門普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計(jì)中青年和中老年對(duì)新高考了解的概率;(2)請(qǐng)根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計(jì)中青年中老年總計(jì)附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.18.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長(zhǎng).(2)若為線段上一點(diǎn),且,求二面角的余弦值.19.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.20.(12分)為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問(wèn)卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門為此次參加問(wèn)卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.21.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說(shuō)明理由.22.(10分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
準(zhǔn)確畫圖,由圖形對(duì)稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問(wèn)題是圓錐曲線中的重點(diǎn)問(wèn)題,需強(qiáng)化練習(xí),才能在解決此類問(wèn)題時(shí)事半功倍,信手拈來(lái).2、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過(guò)程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.3、B【解析】
設(shè)過(guò)點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.4、C【解析】
先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問(wèn)題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問(wèn)題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問(wèn)題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.5、A【解析】
由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.7、C【解析】
由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.8、D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.9、B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.10、B【解析】
還原幾何體可知原幾何體為半個(gè)圓柱和一個(gè)四棱錐組成的組合體,分別求解兩個(gè)部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個(gè)圓柱,上半部分為一個(gè)四棱錐半個(gè)圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項(xiàng):【點(diǎn)睛】本題考查三視圖的還原、組合體體積的求解問(wèn)題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.11、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.12、C【解析】
根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.15、充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.16、3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時(shí)即為所求.2y+1=0x-y-1=0點(diǎn)A(12,z在點(diǎn)A處有最小值:z=2×1故答案為:32【點(diǎn)睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問(wèn)題的基本方法.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對(duì)高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測(cè)值,對(duì)照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機(jī)變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對(duì)新高考了解的概率,中老年對(duì)新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計(jì)中青年22830老年81220總計(jì)302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián).(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;;.所以的分布列為012.【點(diǎn)睛】本題考查概率、獨(dú)立性檢驗(yàn)及隨機(jī)變量分布列和期望,考查計(jì)算求解能力,屬于基礎(chǔ)題.18、(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過(guò)作于,過(guò)作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來(lái)計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線段的三等分點(diǎn).解法一:過(guò)作于,則平面,所以,過(guò)作,垂足為,則為二面角的平面角,因?yàn)椋?,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點(diǎn)睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化.空間中的角的計(jì)算,可以建立空間直角坐標(biāo)系把角的計(jì)算歸結(jié)為向量的夾角的計(jì)算,也可以構(gòu)建空間角,把角的計(jì)算歸結(jié)平面圖形中的角的計(jì)算.20、(1);(2)估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi)【解析】
(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計(jì)此次活動(dòng)可能贈(zèng)送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)的可能值有10,20,30,40元,且每位家長(zhǎng)獲得贈(zèng)送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈(zèng)10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈(zèng)10元話費(fèi),另一次獲贈(zèng)20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會(huì)均獲20元話費(fèi),概率為.所以變量的分布列為:某家長(zhǎng)獲贈(zèng)話費(fèi)的期望為.所以估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計(jì)算要利用該分布的密度函數(shù)圖象的對(duì)稱性來(lái)進(jìn)行,本題屬于中檔題.21、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點(diǎn),可得與不相交,又與共面,所以,同
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年監(jiān)理工程師考試備考計(jì)劃試題及答案
- 基金業(yè)績(jī)與經(jīng)濟(jì)指標(biāo)的關(guān)聯(lián)性分析試題及答案
- 2025年至長(zhǎng)期合作協(xié)議合同
- 獸醫(yī)教育質(zhì)量提升試題及答案
- 2024年陪診師考試模擬題集:試題及答案
- 在線客服與電商成交的關(guān)系試題及答案
- 投資咨詢工程師考試道路試題及答案分享
- 2025工程合同協(xié)議書(官方版)
- 2025企業(yè)勞動(dòng)合同協(xié)議書范本
- 2024年SCMP實(shí)踐性學(xué)習(xí)方式探索與試題及答案
- 中國(guó)移動(dòng)網(wǎng)絡(luò)資源管理辦法(2016年版)
- 總包(外墻)向涂料單位移交單
- 大學(xué)生心理健康教育(蘭州大學(xué)版)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫(kù)2023年
- 外包鋼加固法
- 監(jiān)護(hù)儀的測(cè)量原理講稿專項(xiàng)課件
- 煤礦常見地質(zhì)構(gòu)造-課件
- 學(xué)?!爸腥A古詩(shī)詞大賽”備考試題庫(kù)(300題各題型)
- 《推動(dòng)和平與發(fā)展》-教學(xué)設(shè)計(jì)
- 創(chuàng)新思維方法
- 歷屆 最近十年 (新知杯)上海市初中數(shù)學(xué)競(jìng)賽試卷及答案(含模擬試題及解答)
- 危大工程安全管理檔案(2019版)
評(píng)論
0/150
提交評(píng)論