2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型2 與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第1頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型2 與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第2頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型2 與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第3頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型2 與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第4頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型2 與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PAGE類型二與動點(diǎn)有關(guān)的探究題(專題訓(xùn)練)1.(2023·浙江紹興·統(tǒng)考中考真題)在平行四邊形SKIPIF1<0中(頂點(diǎn)SKIPIF1<0按逆時針方向排列),SKIPIF1<0為銳角,且SKIPIF1<0.

(1)如圖1,求SKIPIF1<0邊上的高SKIPIF1<0的長.(2)SKIPIF1<0是邊SKIPIF1<0上的一動點(diǎn),點(diǎn)SKIPIF1<0同時繞點(diǎn)SKIPIF1<0按逆時針方向旋轉(zhuǎn)SKIPIF1<0得點(diǎn)SKIPIF1<0.①如圖2,當(dāng)點(diǎn)SKIPIF1<0落在射線SKIPIF1<0上時,求SKIPIF1<0的長.②當(dāng)SKIPIF1<0是直角三角形時,求SKIPIF1<0的長.【答案】(1)8(2)①SKIPIF1<0;②SKIPIF1<0或SKIPIF1<0【分析】(1)利用正弦的定義即可求得答案;(2)①先證明SKIPIF1<0,再證明SKIPIF1<0,最后利用相似三角形對應(yīng)邊成比例列出方程即可;②分三種情況討論完成,第一種:SKIPIF1<0為直角頂點(diǎn);第二種:SKIPIF1<0為直角頂點(diǎn);第三種,SKIPIF1<0為直角頂點(diǎn),但此種情況不成立,故最終有兩個答案.【詳解】(1)在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0.(2)①如圖1,作SKIPIF1<0于點(diǎn)SKIPIF1<0,由(1)得,SKIPIF1<0,則SKIPIF1<0,作SKIPIF1<0交SKIPIF1<0延長線于點(diǎn)SKIPIF1<0,則SKIPIF1<0,

∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.由旋轉(zhuǎn)知SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.②由旋轉(zhuǎn)得SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.情況一:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時,如圖2.

∵SKIPIF1<0,∴SKIPIF1<0落在線段SKIPIF1<0延長線上.∵SKIPIF1<0,∴SKIPIF1<0,由(1)知,SKIPIF1<0,∴SKIPIF1<0.情況二:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時,如圖3.

設(shè)SKIPIF1<0與射線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,作SKIPIF1<0于點(diǎn)SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.情況三:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時,點(diǎn)SKIPIF1<0落在SKIPIF1<0的延長線上,不符合題意.綜上所述,SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),正弦的定義,全等的判定及性質(zhì),相似的判定及性質(zhì),理解記憶相關(guān)定義,判定,性質(zhì)是解題的關(guān)鍵.2.在數(shù)學(xué)興趣小組活動中,小亮進(jìn)行數(shù)學(xué)探究活動.(1)SKIPIF1<0是邊長為3的等邊三角形,E是邊SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖1,求SKIPIF1<0的長;(2)SKIPIF1<0是邊長為3的等邊三角形,E是邊SKIPIF1<0上的一個動點(diǎn),小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖2,在點(diǎn)E從點(diǎn)C到點(diǎn)A的運(yùn)動過程中,求點(diǎn)F所經(jīng)過的路徑長;(3)SKIPIF1<0是邊長為3的等邊三角形,M是高SKIPIF1<0上的一個動點(diǎn),小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖3,在點(diǎn)M從點(diǎn)C到點(diǎn)D的運(yùn)動過程中,求點(diǎn)N所經(jīng)過的路徑長;(4)正方形SKIPIF1<0的邊長為3,E是邊SKIPIF1<0上的一個動點(diǎn),在點(diǎn)E從點(diǎn)C到點(diǎn)B的運(yùn)動過程中,小亮以B為頂點(diǎn)作正方形SKIPIF1<0,其中點(diǎn)F、G都在直線SKIPIF1<0上,如圖4,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時,點(diǎn)F、G、H與點(diǎn)B重合.則點(diǎn)H所經(jīng)過的路徑長為______,點(diǎn)G所經(jīng)過的路徑長為______.【答案】(1)1;(2)3;(3)SKIPIF1<0;(4)SKIPIF1<0;SKIPIF1<0【分析】(1)由SKIPIF1<0、SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可證SKIPIF1<0即可;(2)連接SKIPIF1<0,SKIPIF1<0、SKIPIF1<0是等邊三角形,可證SKIPIF1<0,可得SKIPIF1<0,又點(diǎn)SKIPIF1<0在SKIPIF1<0處時,SKIPIF1<0,點(diǎn)SKIPIF1<0在A處時,點(diǎn)SKIPIF1<0與SKIPIF1<0重合.可得點(diǎn)SKIPIF1<0運(yùn)動的路徑的長SKIPIF1<0;(3)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0、SKIPIF1<0是等邊三角形,可證SKIPIF1<0,可得SKIPIF1<0.又點(diǎn)SKIPIF1<0在SKIPIF1<0處時,SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0處時,點(diǎn)SKIPIF1<0與SKIPIF1<0重合.可求點(diǎn)SKIPIF1<0所經(jīng)過的路徑的長SKIPIF1<0;(4)連接CG,AC,OB,由∠CGA=90°,點(diǎn)G在以AC中點(diǎn)為圓心,AC為直徑的SKIPIF1<0上運(yùn)動,由四邊形ABCD為正方形,BC為邊長,設(shè)OC=x,由勾股定理SKIPIF1<0即,可求SKIPIF1<0,點(diǎn)G所經(jīng)過的路徑長為SKIPIF1<0長=SKIPIF1<0,點(diǎn)H所經(jīng)過的路徑長為SKIPIF1<0的長SKIPIF1<0.【詳解】解:(1)∵SKIPIF1<0、SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)連接SKIPIF1<0,∵SKIPIF1<0、SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又點(diǎn)SKIPIF1<0在SKIPIF1<0處時,SKIPIF1<0,點(diǎn)SKIPIF1<0在A處時,點(diǎn)SKIPIF1<0與SKIPIF1<0重合.∴點(diǎn)SKIPIF1<0運(yùn)動的路徑的長SKIPIF1<0;(3)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0、SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又點(diǎn)SKIPIF1<0在SKIPIF1<0處時,SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0處時,點(diǎn)SKIPIF1<0與SKIPIF1<0重合,∴點(diǎn)SKIPIF1<0所經(jīng)過的路徑的長SKIPIF1<0;(4)連接CG,AC,OB,∵∠CGA=90°,∴點(diǎn)G在以AC中點(diǎn)為圓心,AC為直徑的SKIPIF1<0上運(yùn)動,∵四邊形ABCD為正方形,BC為邊長,∴∠COB=90°,設(shè)OC=x,由勾股定理SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0,點(diǎn)G所經(jīng)過的路徑長為SKIPIF1<0長=SKIPIF1<0,點(diǎn)H在以BC中點(diǎn)為圓心,BC長為直徑的弧SKIPIF1<0上運(yùn)動,點(diǎn)H所經(jīng)過的路徑長為SKIPIF1<0的長度,∵點(diǎn)G運(yùn)動圓周的四分之一,∴點(diǎn)H也運(yùn)動圓周的四分一,點(diǎn)H所經(jīng)過的路徑長為SKIPIF1<0的長=SKIPIF1<0,故答案為SKIPIF1<0;SKIPIF1<0.【點(diǎn)睛本題考查等邊三角形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,90°圓周角所對弦是直徑,圓的弧長公式,掌握等邊三角形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,90°圓周角所對弦是直徑,圓的弧長公式是解題關(guān)鍵.3.(2023·湖南郴州·統(tǒng)考中考真題)已知SKIPIF1<0是等邊三角形,點(diǎn)SKIPIF1<0是射線SKIPIF1<0上的一個動點(diǎn),延長SKIPIF1<0至點(diǎn)SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0交射線SKIPIF1<0于點(diǎn)SKIPIF1<0.

(1)如圖1,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時,猜測線段SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系并說明理由;(2)如圖2,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0的延長線上時,①線段SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系是否仍然成立?請說明理由;②如圖3,連接SKIPIF1<0.設(shè)SKIPIF1<0,若SKIPIF1<0,求四邊形SKIPIF1<0的面積.【答案】(1)SKIPIF1<0,理由見解析(2)①成立,理由見解析②SKIPIF1<0【分析】(1)過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,易得SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,即可得出結(jié)論.(2)①過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,易得SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,即可得出結(jié)論;②過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)已知條件推出SKIPIF1<0,得到SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,求出SKIPIF1<0的長,利用四邊形SKIPIF1<0的面積為SKIPIF1<0進(jìn)行求解即可.【詳解】(1)解:SKIPIF1<0,理由如下:∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,

∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)①成立,理由如下:∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,

∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則:SKIPIF1<0,

由①知:SKIPIF1<0為等邊三角形,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0②,聯(lián)立①②可得:SKIPIF1<0(負(fù)值已舍去),經(jīng)檢驗(yàn)SKIPIF1<0是原方程的根,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0的面積為SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】本題考查等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形.本題的綜合性強(qiáng),難度大,屬于中考壓軸題,解題的關(guān)鍵是添加輔助線構(gòu)造特殊三角形,全等和相似三角形.4.(2021·浙江中考真題)已知在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是SKIPIF1<0延長線上的一點(diǎn),連結(jié)SKIPIF1<0.(1)如圖1,若SKIPIF1<0,求SKIPIF1<0的長.(2)過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0延長線于點(diǎn)SKIPIF1<0,如圖2所示.若SKIPIF1<0,求證:SKIPIF1<0.(3)如圖3,若SKIPIF1<0,是否存在實(shí)數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0?若存在,請直接寫出SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)見解析;(3)存在,SKIPIF1<0【分析】(1)先解直角三角形ABC得出SKIPIF1<0,從而得出SKIPIF1<0是等邊三角形,再解直角三角形ACP即可求出AC的長,進(jìn)而得出BC的長;(2)連結(jié)SKIPIF1<0,先利用AAS證出SKIPIF1<0,得出AE=2PE,AC=DE,再得出SKIPIF1<0是等邊三角形,然后由SAS得出SKIPIF1<0,得出AE=BC即可得出結(jié)論;(3)過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0延長線于點(diǎn)SKIPIF1<0,連接BE,過C作CG⊥AB于G,過E作EN⊥AB于N,由(2)得AE=2AP,DE=AC,再證明SKIPIF1<0,從而得出SKIPIF1<0得出DE=BE,然后利用勾股定理即可得出m的值.【詳解】(1)解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)證明:連結(jié)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)存在這樣的SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0延長線于點(diǎn)SKIPIF1<0,連接BE,過C作CG⊥AB于G,過E作EN⊥AB于N,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由(2)得AE=2AP,DE=AC,∴CG=EN,∵SKIPIF1<0,∴AE=BC,∵∠ANE=∠BGC=90°,SKIPIF1<0,∴∠EAN=∠CBG∵AE=BC,AB=BA,∴SKIPIF1<0∴AC=BE,∴DE=BE,∴∠EDB=∠EBD=45°,∴∠DEB=90°,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0【點(diǎn)睛】本題屬于三角形綜合題,考查了解直角三角形,全等三角形的性質(zhì)與判定,等邊三角形和等腰三角形的性質(zhì)、勾股定理,解題的關(guān)鍵是合理添加輔助線,有一定的難度.5.(2023·遼寧大連·統(tǒng)考中考真題)綜合與實(shí)踐問題情境:數(shù)學(xué)活動課上,王老師給同學(xué)們每人發(fā)了一張等腰三角形紙片探究折疊的性質(zhì).已知SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0上一動點(diǎn),將SKIPIF1<0以SKIPIF1<0為對稱軸翻折.同學(xué)們經(jīng)過思考后進(jìn)行如下探究:獨(dú)立思考:小明:“當(dāng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上時,SKIPIF1<0.”小紅:“若點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn),給出SKIPIF1<0與SKIPIF1<0的長,就可求出SKIPIF1<0的長.”實(shí)踐探究:奮進(jìn)小組的同學(xué)們經(jīng)過探究后提出問題1,請你回答:

問題1:在等腰SKIPIF1<0中,SKIPIF1<0由SKIPIF1<0翻折得到.(1)如圖1,當(dāng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上時,求證:SKIPIF1<0;(2)如圖2,若點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0,求SKIPIF1<0的長.問題解決:小明經(jīng)過探究發(fā)現(xiàn):若將問題1中的等腰三角形換成SKIPIF1<0的等腰三角形,可以將問題進(jìn)一步拓展.問題2:如圖3,在等腰SKIPIF1<0中,SKIPIF1<0.若SKIPIF1<0,則求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0;問題2:SKIPIF1<0【分析】(1)根據(jù)等邊對等角可得SKIPIF1<0,根據(jù)折疊以及三角形內(nèi)角和定理,可得SKIPIF1<0SKIPIF1<0,根據(jù)鄰補(bǔ)角互補(bǔ)可得SKIPIF1<0,即可得證;(2)連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的中位線,勾股定理求得SKIPIF1<0,根據(jù)SKIPIF1<0即可求解;問題2:連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)已知條件可得SKIPIF1<0,則四邊形SKIPIF1<0是矩形,勾股定理求得SKIPIF1<0,根據(jù)三線合一得出SKIPIF1<0,根據(jù)勾股定理求得SKIPIF1<0的長,即可求解.【詳解】(1)∵等腰SKIPIF1<0中,SKIPIF1<0由SKIPIF1<0翻折得到∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)如圖所示,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,

∵折疊,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0;問題2:如圖所示,連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),折疊的性質(zhì),勾股定理,矩形的性質(zhì)與判定,熟練掌握以上知識是解題的關(guān)鍵.6.(2021·浙江中考真題)問題:如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的平分線AE,BF分別與直線CD交于點(diǎn)E,F(xiàn),求EF的長.答案:SKIPIF1<0.探究:(1)把“問題”中的條件“SKIPIF1<0”去掉,其余條件不變.①當(dāng)點(diǎn)E與點(diǎn)F重合時,求AB的長;②當(dāng)點(diǎn)E與點(diǎn)C重合時,求EF的長.(2)把“問題”中的條件“SKIPIF1<0,SKIPIF1<0”去掉,其余條件不變,當(dāng)點(diǎn)C,D,E,F(xiàn)相鄰兩點(diǎn)間的距離相等時,求SKIPIF1<0的值.【答案】(1)①10;②5;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【分析】(1)①利用平行四邊形的性質(zhì)和角平分線的定義先分別求出SKIPIF1<0,SKIPIF1<0,即可完成求解;

②證明出SKIPIF1<0即可完成求解;

(2)本小題由于E、F點(diǎn)的位置不確定,故應(yīng)先分情況討論,再根據(jù)每種情況,利用SKIPIF1<0,SKIPIF1<0以及點(diǎn)C,D,E,F(xiàn)相鄰兩點(diǎn)間的距離相等建立相等關(guān)系求解即可.【詳解】(1)①如圖1,四邊形ABCD是平行四邊形,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.同理可得:SKIPIF1<0.SKIPIF1<0點(diǎn)E與點(diǎn)F重合,SKIPIF1<0.

②如圖2,點(diǎn)E與點(diǎn)C重合,同理可證SKIPIF1<0,∴?ABCD是菱形,SKIPIF1<0,SKIPIF1<0點(diǎn)F與點(diǎn)D重合,SKIPIF1<0.(2)情況1,如圖3,可得SKIPIF1<0,SKIPIF1<0.情況2,如圖4,同理可得,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.情況3,如圖5,由上,同理可以得到SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.綜上:SKIPIF1<0的值可以是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題屬于探究型應(yīng)用題,綜合考查了平行四邊形的性質(zhì)、角平分線的定義、菱形的判定與性質(zhì)等內(nèi)容,解決本題的關(guān)鍵是讀懂題意,正確畫出圖形,建立相等關(guān)系求解等,本題綜合性較強(qiáng),要求學(xué)生有較強(qiáng)的分析能力,本題涉及到的思想方法有分類討論和數(shù)形結(jié)合的思想等.7.(2023·重慶·統(tǒng)考中考真題)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上一動點(diǎn),連接SKIPIF1<0.

(1)如圖1,若SKIPIF1<0,SKIPIF1<0,求線段SKIPIF1<0的長.(2)如圖2,以SKIPIF1<0為邊在SKIPIF1<0上方作等邊SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),連接SKIPIF1<0并延長,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0.若SKIPIF1<0,求證:SKIPIF1<0.(3)在SKIPIF1<0取得最小值的條件下,以SKIPIF1<0為邊在SKIPIF1<0右側(cè)作等邊SKIPIF1<0.點(diǎn)SKIPIF1<0為SKIPIF1<0所在直線上一點(diǎn),將SKIPIF1<0沿SKIPIF1<0所在直線翻折至SKIPIF1<0所在平面內(nèi)得到SKIPIF1<0.連接SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時,連接SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0所在直線翻折至SKIPIF1<0所在平面內(nèi)得到SKIPIF1<0,請直接寫出此時SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)見解析(3)SKIPIF1<0【分析】(1)解SKIPIF1<0,求得SKIPIF1<0,根據(jù)SKIPIF1<0即可求解;(2)延長SKIPIF1<0使得SKIPIF1<0,連接SKIPIF1<0,可得SKIPIF1<0,根據(jù)SKIPIF1<0,得出SKIPIF1<0四點(diǎn)共圓,則SKIPIF1<0,SKIPIF1<0,得出SKIPIF1<0,結(jié)合已知條件得出SKIPIF1<0,可得SKIPIF1<0,即可得證;(3)在SKIPIF1<0取得最小值的條件下,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,根據(jù)題意得出點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的中位線,SKIPIF1<0在半徑為SKIPIF1<0的SKIPIF1<0上運(yùn)動,當(dāng)SKIPIF1<0取最大值時,即SKIPIF1<0三點(diǎn)共線時,此時如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則四邊形SKIPIF1<0是矩形,得出SKIPIF1<0是SKIPIF1<0的中位線,同理可得SKIPIF1<0是SKIPIF1<0的中位線,SKIPIF1<0是等邊三角形,將SKIPIF1<0沿SKIPIF1<0所在直線翻折至SKIPIF1<0所在平面內(nèi)得到SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,勾股定理求得SKIPIF1<0,進(jìn)而即可求解.【詳解】(1)解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)證明:如圖所示,延長SKIPIF1<0使得SKIPIF1<0,連接SKIPIF1<0,

∵SKIPIF1<0是SKIPIF1<0的中點(diǎn)則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0四點(diǎn)共圓,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:如圖所示,

在SKIPIF1<0取得最小值的條件下,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵將SKIPIF1<0沿SKIPIF1<0所在直線翻折至SKIPIF1<0所在平面內(nèi)得到SKIPIF1<0.∴SKIPIF1<0∴點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的中位線,∴SKIPIF1<0在半徑為SKIPIF1<0的SKIPIF1<0上運(yùn)動,當(dāng)SKIPIF1<0取最大值時,即SKIPIF1<0三點(diǎn)共線時,此時如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,

∵SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,如圖所示,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則四邊形SKIPIF1<0是矩形,

∴SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0即SKIPIF1<0是SKIPIF1<0的中位線,同理可得SKIPIF1<0是SKIPIF1<0的中位線,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0是等邊三角形,將SKIPIF1<0沿SKIPIF1<0所在直線翻折至SKIPIF1<0所在平面內(nèi)得到SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0則SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0.

【點(diǎn)睛】本題考查了解直角三角形,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形中位線的性質(zhì),折疊的性質(zhì),圓外一點(diǎn)到圓上距離的最值問題,垂線段最短,矩形的性質(zhì),等邊三角形的性質(zhì)與判定,熟練掌握以上知識是解題的關(guān)鍵.8.如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EFSKIPIF1<0AB交PQ于F,連接BF.(1)求證:四邊形BFEP為菱形;(2)當(dāng)點(diǎn)E在AD邊上移動時,折痕的端點(diǎn)P、Q也隨之移動;①當(dāng)點(diǎn)Q與點(diǎn)C重合時(如圖2),求菱形BFEP的邊長;②若限定P、Q分別在邊BA、BC上移動,求出點(diǎn)E在邊AD上移動的最大距離.【答案】(1)見解析;(2)①SKIPIF1<0;②SKIPIF1<0【分析】(1)由折疊的性質(zhì)得出PB=PE,BF=EF,∠BPF=∠EPF,由平行線的性質(zhì)得出∠BPF=∠EFP,證出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出結(jié)論;(2)①由矩形的性質(zhì)得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由對稱的性質(zhì)得出CE=BC=5cm,在RtSKIPIF1<0CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在RtSKIPIF1<0APE中,由勾股定理得出方程,解方程得出EP=SKIPIF1<0cm即可;②當(dāng)點(diǎn)Q與點(diǎn)C重合時,點(diǎn)E離點(diǎn)A最近,由①知,此時AE=1cm;當(dāng)點(diǎn)P與點(diǎn)A重合時,點(diǎn)E離點(diǎn)A最遠(yuǎn),此時四邊形ABQE為正方形,AE=AB=3cm,即可得出答案.【詳解】(1)證明:∵折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,∴點(diǎn)B與點(diǎn)E關(guān)于PQ對稱,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EFSKIPIF1<0AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四邊形BFEP為菱形;(2)解:①∵四邊形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵點(diǎn)B與點(diǎn)E關(guān)于PQ對稱,∴CE=BC=5cm,在RtSKIPIF1<0CDE中,DE=SKIPIF1<0=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在RtSKIPIF1<0APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=SKIPIF1<0cm,∴菱形BFEP的邊長為SKIPIF1<0cm;②當(dāng)點(diǎn)Q與點(diǎn)C重合時,如圖2:點(diǎn)E離點(diǎn)A最近,由①知,此時AE=1cm;當(dāng)點(diǎn)P與點(diǎn)A重合時,如圖3所示:點(diǎn)E離點(diǎn)A最遠(yuǎn),此時四邊形ABQE為正方形,AE=AB=3cm,∴點(diǎn)E在邊AD上移動的最大距離為2cm.【點(diǎn)睛】本題是四邊形綜合題目,考查了矩形的性質(zhì)、折疊的性質(zhì)、菱形的判定、平行線的性質(zhì)、等腰三角形的判定、勾股定理、正方形的性質(zhì)等知識;本題綜合性強(qiáng),有一定難度.9.(2023·四川成都·統(tǒng)考中考真題)探究式學(xué)習(xí)是新課程倡導(dǎo)的重要學(xué)習(xí)方式,某興趣小組擬做以下探究.在SKIPIF1<0中,SKIPIF1<0,D是SKIPIF1<0邊上一點(diǎn),且SKIPIF1<0(n為正整數(shù)),E是SKIPIF1<0邊上的動點(diǎn),過點(diǎn)D作SKIPIF1<0的垂線交直線SKIPIF1<0于點(diǎn)F.

【初步感知】(1)如圖1,當(dāng)SKIPIF1<0時,興趣小組探究得出結(jié)論:SKIPIF1<0,請寫出證明過程.【深入探究】(2)①如圖2,當(dāng)SKIPIF1<0,且點(diǎn)F在線段SKIPIF1<0上時,試探究線段SKIPIF1<0之間的數(shù)量關(guān)系,請寫出結(jié)論并證明;②請通過類比、歸納、猜想,探究出線段SKIPIF1<0之間數(shù)量關(guān)系的一般結(jié)論(直接寫出結(jié)論,不必證明)【拓展運(yùn)用】(3)如圖3,連接SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)為M.若SKIPIF1<0,求點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C的過程中,點(diǎn)M運(yùn)動的路徑長(用含n的代數(shù)式表示).【答案】(1)見解析(2)①SKIPIF1<0,證明過程略;②當(dāng)點(diǎn)F在射線SKIPIF1<0上時,SKIPIF1<0,當(dāng)點(diǎn)F在SKIPIF1<0延長線上時,SKIPIF1<0(3)SKIPIF1<0【分析】(1)連接SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,證明SKIPIF1<0,從而得到SKIPIF1<0即可解答;(2)①過SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0是等腰直角三角形,SKIPIF1<0,根據(jù)(1)中結(jié)論可得SKIPIF1<0,再根據(jù)SKIPIF1<0,SKIPIF1<0,即可得到SKIPIF1<0;②分類討論,即當(dāng)點(diǎn)F在射線SKIPIF1<0上時;當(dāng)點(diǎn)F在SKIPIF1<0延長線上時,畫出圖形,根據(jù)①中的原理即可解答;(3)如圖,當(dāng)SKIPIF1<0與SKIPIF1<0重合時,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0重合時,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,可得SKIPIF1<0的軌跡長度即為SKIPIF1<0的長度,可利用建系的方法表示出SKIPIF1<0的坐標(biāo),再利用中點(diǎn)公式求出SKIPIF1<0,最后利用勾股定理即可求出SKIPIF1<0的長度.【詳解】(1)證明:如圖,連接SKIPIF1<0,

當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)①SKIPIF1<0證明:如圖,過SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,

當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是等腰直角三角形,且SKIPIF1<0,SKIPIF1<0,根據(jù)(1)中的結(jié)論可得SKIPIF1<0,SKIPIF1<0;故線段SKIPIF1<0之間的數(shù)量關(guān)系為SKIPIF1<0;②解:當(dāng)點(diǎn)F在射線SKIPIF1<0上時,如圖,在SKIPIF1<0上取一點(diǎn)SKIPIF1<0使得SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0的平行線,交SKIPIF1<0于點(diǎn)SKI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論