版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MathematicalStructures〔數(shù)學(xué)結(jié)構(gòu)〕22024/5/21CollegeofComputerScience&Technology,BUPTMathematicalstructureAcollectionofobjectswithoperationsdefinedonthemandtheaccompanyingpropertiesformamathematicalstructureorsystem.Inthisbookwedealonlywithdiscretemathematicalstructures.32024/5/21CollegeofComputerScience&Technology,BUPTExample1Thecollectionofsetswiththeoperationsofunion,intersection,andcomplementandtheiraccompanyingpropertiesisa(discrete)mathematicalstructure.Wedenotethisstructureby[sets,
,
,].42024/5/21CollegeofComputerScience&Technology,BUPTExample2Thecollectionof33matriceswiththeoperationsofaddition,multiplication,andtranspose〔轉(zhuǎn)置〕isamathematicalstructuredenotedby[33matrices,+,,T].52024/5/21CollegeofComputerScience&Technology,BUPTClosure〔封閉性〕Astructureisclosedwithrespecttoanoperationifthatoperationalwaysproducesanothermemberofthecollectionofobjects.62024/5/21CollegeofComputerScience&Technology,BUPTExamplesThestructure[5
5matrices,+,*,T]isclosedwithrespecttoadditionbecausethesumoftwo5
5matricesisanother5
5matrix.Thestructure[oddintegers,+,*]isnotclosedwithrespecttoaddition.Thesumoftwooddintegersisaneveninteger.Thisstructuredoeshavetheclosurepropertyformultiplication,sincetheproductoftwooddnumbersisanoddnumber.72024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperation〔二元運算〕Anoperationthatcombinestwoobjectsisabinaryoperation.Anoperationthatrequiresonlyoneobjectisaunaryoperation〔一元運算〕.Binaryoperationsoftenhavesimilarproperties,aswehaveseenearlier.Example(a)Setintersectionisabinaryoperationsinceitcombinestwosetstoproduceanewset.Producingthetransposeofmatrixisaunaryoperation.82024/5/21CollegeofComputerScience&Technology,BUPTCommutative〔交換性〕Commonpropertieshavebeengivennames.Forexample,iftheorderoftheobjectsdoesnotaffecttheoutcomeofabinaryoperation,wesaythattheoperationiscommutative.Thatis,ifx
y=y
x,whereissomebinaryoperation,iscommutative.Example(a)JoinandmeetforBooleanmatricesarecommutativeoperations.A
B=B
AandA
B=B
A.(b)OrdinarymatrixmultiplicationisnotacommutativeoperationAB
BA.92024/5/21CollegeofComputerScience&Technology,BUPTNoteanoperationhasapropertymeansthestatementofthepropertyistruewhentheoperationisusedwithanyobjectsinthestructure.Ifthereisevenonecasewhenthestatementisnottrue,theoperationdoesnothavethatproperty.102024/5/21CollegeofComputerScience&Technology,BUPTAssociative〔結(jié)合性〕Ifnisabinaryoperation,thennisassociativeorhastheassociativepropertyif(x
y)
z=x
(y
z).ExampleSetunionisanassociativeoperation,since(A
B)
C=A
(B
C)isalwaystrue.112024/5/21CollegeofComputerScience&Technology,BUPTDistributive〔分配〕propertyIfamathematicalstructurehastwobinaryoperations,say
and
,adistributivepropertyhasthefollowingpattern:
x
(y
z)=(x
y)
(x
z).Example(a)Wearefamiliarwiththedistributivepropertyforrealnumbers;ifa,b,andcarerealnumbers,thena
(b+c)=a
b+a
c.(b)Thestructure[sets,
,
,]hastwodistributiveproperties:A
(B
C)=(A
B)
(A
C)andA
(B
C)=(A
B)
(A
C).122024/5/21CollegeofComputerScience&Technology,BUPTDeMorgan‘slaws〔德.摩根律〕Severalofthestructureswehaveseenhaveaunaryoperationandtwobinaryoperations.Iftheunaryoperationis*andthebinaryoperationsare
and
.thenDeMorgan'slawsare(x
y)*=x*
y*and(x
y)*=x*
y*.Example9(a)(A
B)=A
Band(A
B)=A
B.(b)Thestructure[realnumbers,+,*,]doesnotsatisfyDeMorgan'slaws.since
132024/5/21CollegeofComputerScience&Technology,BUPTIdentity(單位元〕foranoperationAstructurewithabinaryoperation
maycontainadistinguishedobjecte,withthepropertyx
e=e
x=xforallxinthecollection.Wecalleanidentityfor
.Infact,anidentityforanoperationmustbeunique.142024/5/21CollegeofComputerScience&Technology,BUPTTheorem1Ifeisanidentityforabinaryoperation
,theneisunique.ProofAssumeanotherobjectialsohastheidentityproperty,sox
i=i
x=x.Thene
i=e,butsinceeisanidentityforn,i
e=e
i=i.Thus,i=e.Thereisatmostoneobjectwiththeidentitypropertyfor
.152024/5/21CollegeofComputerScience&Technology,BUPTExample10For[n
nmatrices,+,*,T],Inistheidentityformatrixmultiplicationandthen
nzeromatrixistheidentityformatrixaddition.162024/5/21CollegeofComputerScience&Technology,BUPTInverse〔逆元〕
Ifabinaryoperation
hasanidentitye,wesayyisa
-inverseofxifx
y=y
x=e.Theorem2If
isanassociativeoperationandxhasa
-inversey,thenyisunique.ProofAssumethereisanother
-inverseforx,sayz.Then
(z
x)
y=e
y=yandz
(x
y)=z
e=z.Since
isassociative,(z
x)
y=z
(x
y)andsoy=z.172024/5/21CollegeofComputerScience&Technology,BUPTExample11(a)Inthestructure[3
3matrices,+,*,T]eachmatrixA=[aij]hasa+-inverse,oradditiveinverse,-A=[-aij].(b)Inthestructure[integers,+,*],onlytheintegersland-lhavemultiplicativeinverses.182024/5/21CollegeofComputerScience&Technology,BUPTExample12Let
,and*bedefinedfortheset{0,l}bythefollowingtables.Thus1
0=l,0
1=0,and1*=0.Determineifeachofthefollowingistruefor[{0,l},
,
,*].(a)
iscommutative.(b)
isassociative.(c)DeMorgan'slawshold.(d)Twodistributivepropertiesholdforthestructure.192024/5/21CollegeofComputerScience&Technology,BUPTExample12
Solution(a)Thestatementx
y=y
xmustbetrueforallchoicesofxandy.Sinceboth0
landl
0arel,
iscommutative.(b)Theeightpossiblecasestobecheckedareleftasanexercise.(c)(0
0)*=0*=l0*
0*=1
1=l.(0
1)*=1*=00*
1*=1
0=0. (1
1)*=0*=l1*
1*=0
0=0. ThelastpairshowsthatDeMorgan'slawsdonotholdinthisstructure.202024/5/21CollegeofComputerScience&Technology,BUPT(d)Onepossibledistributivepropertyisx
(y
z)=(x
y)
(x
z).allpossiblecasesmustbechecked.Wecanshowitinatable.
212024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperations
(二元運算)AbinaryoperationonasetAisaneverywheredefinedfunctionf:A
A
A.Abinaryoperationmustsatisfy:fassignsanelementf(a,b)ofAtoeachorderedpair(a,b)inA
A.OnlyoneelementofAisassignedtoeachorderedpair.222024/5/21CollegeofComputerScience&Technology,BUPTNoteIt’scustomarytodenotebinaryoperationsbyasymbolsuchas
,insteadoff,andtodenotetheelementassignedto(a,b)bya
b[insteadof(a,b)].Aisclosed(封閉的)
undertheoperation
,ifaandbareelementsinA,a
b
A.232024/5/21CollegeofComputerScience&Technology,BUPTExample1,2
LetA=Z.Definea
basa+b.
isabinaryoperationonZ.LetA=R.Definea
basa/b.
isnotabinaryoperation.Forexample,3
0isnotdefined.242024/5/21CollegeofComputerScience&Technology,BUPTExample3LetA=Z+.Definea
basa-b.
isnotabinaryoperation.itdoesnotassignanelementofAtoeveryorderedpairofelementsofA;forexample,2
5
A.252024/5/21CollegeofComputerScience&Technology,BUPTExample4LetA=Z.Definea
basanumberlessthanbothaandb.
isnotabinaryoperation,sinceitdoesnotassignauniqueelementofAtoeachorderedpairofelementsofA;forexample,8
6couldbe5,4,3,l,andsoon.inthiscase,
wouldbearelationfromA
AtoA,butnotafunction262024/5/21CollegeofComputerScience&Technology,BUPTExample5,6LetA=Z.Definea
basmax{a,b}.
isabinaryoperation;forexample,2
4=4,-3
(-5)=-3.LetA=P(S),forsomesetS.IfVandWaresubsetsofS,defineV
WasV
W.
isabinaryoperationonA.ifwedefineV
'WasV
W,then
'isanotherbinaryoperationonA.Note:It’spossibletodefinemanybinaryoperationsonthesameset.272024/5/21CollegeofComputerScience&Technology,BUPTExample7,8LetMbethesetofalln
nBooleanmatricesforafixedn.DefineA
BasA
B
isabinaryoperation.ThisisalsotrueofA
B.LetLbealattice.Definea
basa
b.
isabinaryoperationonL.Thisisalsotrueofa
b282024/5/21CollegeofComputerScience&Technology,BUPTTables–運算表IfA={al,a2,...,an}isafiniteset,wecandefineabinaryoperationonAbymeansofatable292024/5/21CollegeofComputerScience&Technology,BUPTExample9LetA={0,l}.Definebinaryoperations
and
bythefollowingtables:302024/5/21CollegeofComputerScience&Technology,BUPTHowmanyoperations?IfA={a,b},howmanybinaryoperationscanbedefinedonA.Everybinaryoperation
onAcanbedescribedbyatableThereare2
2
2
2=24or16waystocompletethetable.312024/5/21CollegeofComputerScience&Technology,BUPTPropertiesofBinaryOperations〔二元運算的性質(zhì)〕Forallelementsa,b,andcinACommutative(可交換的)a*b=b*a
Associative(可結(jié)合的)a*(b*c)=(a*b)*cIdempotent(冪等的)a*a=a322024/5/21CollegeofComputerScience&Technology,BUPTCommutative–可交換的AbinaryoperationonasetAissaidtobecommutativeifa*b=b*aforallelementsaandbinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ.332024/5/21CollegeofComputerScience&Technology,BUPTCommutativeAbinaryoperationthatisdescribedbyatableiscommutativeifandon1yifTheentriesinthetablearesymmetricwithrespecttothemaindiagonal.342024/5/21CollegeofComputerScience&Technology,BUPTExample12Whichofthefol1owingbinaryoperationsonA={a,b,c,d}arecommutative?352024/5/21CollegeofComputerScience&Technology,BUPTAssociative–可結(jié)合的Abinaryoperation*onasetAissaidtobeassociativeifa*(b*c)=(a*b)*cforallelementsa,b,andcinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ
2-(3-5)
(2-3)-5.362024/5/21CollegeofComputerScience&Technology,BUPTExample15LetLbealattice.Thebinaryoperationdefinedbya*b=a
biscommutativeandassociative.Italsosatisfiestheidempotentpropertya
a=a.372024/5/21CollegeofComputerScience&Technology,BUPTExample16Let*beabinaryoperationonasetA,andsupposethat*satisfiesthefollowingpropertiesforanya,b,andcinA:
a=a*a
a*b=b*a
a*(b*c)=(a*b)*cDefinearelation
onAbya
bifandonlyifa=a*b.Showthat(A,
)isaposet,andforalla,binA,GLB(a,b)=a*b.382024/5/21CollegeofComputerScience&Technology,BUPTExample16:SolutionWemustshowthat
isreflexive,antisymm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年反腐倡廉警示教育工作總結(jié)
- 美術(shù)鑒賞與創(chuàng)新思維
- 2006年貴州高考語文真題及答案
- 體育用品行政后勤工作總結(jié)
- 體育用品行業(yè)行政后勤工作總結(jié)
- 2023-2024年員工三級安全培訓(xùn)考試題附答案【完整版】
- 2024企業(yè)主要負責(zé)人安全培訓(xùn)考試題及答案(名校卷)
- 教師期末教學(xué)工作總結(jié)4篇
- 快樂的國慶節(jié)作文400字5篇
- 市場震動月度報告
- 醫(yī)院消防培訓(xùn)方案
- 【人教部編版語文六年級上冊】選擇題專項練習(xí)復(fù)習(xí)(100道題后附答案)
- 腹膜透析建立課件
- 用戶側(cè)儲能商業(yè)模式及投資收益分析
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級上學(xué)期期末物理試卷
- 統(tǒng)編版語文四年級上冊《期末作文專項復(fù)習(xí)》 課件
- 2024年黑龍江省機場集團招聘筆試參考題庫含答案解析
- 食品從業(yè)人員安全學(xué)習(xí)培訓(xùn)記錄
- 內(nèi)科季度護理質(zhì)量分析課件
- 2024年安全生產(chǎn)月活動安全知識競賽題庫含答案
- 銷售回款專項激勵政策方案(地產(chǎn)公司)
評論
0/150
提交評論