2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)(學(xué)生版+解析版)_第1頁
2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)(學(xué)生版+解析版)_第2頁
2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)(學(xué)生版+解析版)_第3頁
2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)(學(xué)生版+解析版)_第4頁
2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)(學(xué)生版+解析版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)

一、選擇題:(本大題共6題,每題4分,滿分24分)【下列各題的四個(gè)選項(xiàng)中,有且只有

一個(gè)選項(xiàng)是正確的,選擇正確項(xiàng)的代號(hào)并填涂在答題紙的相應(yīng)位置上】

1.(4分)在△A8C中,ZC=90°,AB=5,8。=4,則siM的值是()

4334

A.B.C.D.

5543

2.(4分)如圖,已知BD:DF=2:3,那么下列結(jié)論中,正確的是()

A.CD:EF=2:5B.AB:CD=2:5C.AC:AE=2:5D.CE:EA=2:5

3.(4分)無人機(jī)在空中點(diǎn)A處觀察地面上的小麗所在位置點(diǎn)8處的俯角是50。,那么小

麗在地面點(diǎn)3處觀察空中點(diǎn)A處的仰角是()

A.40°B.50°C.60°D.70°

4.(4分)已知點(diǎn)。是線段的中點(diǎn),下列結(jié)論中正確的是()

T1T

A.AC=BCB.AC4-BC=0C.BC=^ABD.\CA\=^BA\

5.(4分)下列對(duì)二次函數(shù)y=-2(x+1)2+3的圖象的描述中,不正確的是()

A.拋物線開口向下

B.拋物線的對(duì)稱軸是直線》=-1

C.拋物線與),軸的交點(diǎn)坐標(biāo)是(0,3)

D.拋物線的頂點(diǎn)坐標(biāo)是(-1,3)

6.(4分)如圖,在△ABC中,NACB=90°,CD,CE分別是斜邊AB上的高和中線,下

CD

B.tanZECB=

C.CD2=AD'DBD.Bd=2DB,EC

二、填空題:(本大題共12題,每題4分,滿分48分)【請將結(jié)果直接填入答題紙的相應(yīng)

位置】

T1TT

7.(4分)計(jì)算:2a—2(a-4b)=.

8.(4分)冬日暖陽,下午4點(diǎn)時(shí)分,小明在學(xué)校操場曬太陽,身高1.5米的他,在地面上

的影長為2米,則此時(shí)高度為9米的旗桿在地面的影長為米.

9.(4分)將拋物線y=2?+3先向左平移1個(gè)單位,再向下平移4個(gè)單位后,所得拋物線

的表達(dá)式是.

10.(4分)如果點(diǎn)A(2,yi),8(5,”)在二次函數(shù)y=/-2x+”圖象上,那么戶

(填>、=或<).

11.(4分)如圖,某人跳芭蕾舞,踮起腳尖時(shí)顯得下半身比上半身更修長.若以裙子腰節(jié)

為分界點(diǎn),身材比例正好符合黃金分割,已知從腳尖到頭頂高度為176c〃?,那么裙子的

腰節(jié)到腳尖的距離為cm.(結(jié)果保留根號(hào))

12.(4分)如圖,ZVIBC中,AB=8,BC=1,點(diǎn)D、E分別在邊A&AC上,已知AE=4,

NAED=NB,則線段OE的長為.

13.(4分)如圖,8E是△A8C的角平分線,過點(diǎn)E作交邊AB于點(diǎn)。.如果AO

=3,DE=2,則BC的長度為

A

14.(4分)二次函數(shù)的圖象如圖所示,對(duì)稱軸為直線x=-l,根據(jù)圖中信息可求得該二次

函數(shù)的解析式為

15.(4分)小明同學(xué)逛書城,從地面一樓乘自動(dòng)扶梯,該扶梯移動(dòng)了13米,到達(dá)距離地面

5米高的二樓,則該自動(dòng)扶梯的坡度i=

16.(4分)如圖,已知點(diǎn)G是△ABC的重心,記向量n=a,AC=云,則向量晶=.(用

向量高+裝的形式表示,其中x,y為實(shí)數(shù))

17.(4分)如圖,已知點(diǎn)A是拋物線圖象上一點(diǎn),將點(diǎn)A向下平移2個(gè)單位到點(diǎn)B,

再把點(diǎn)A繞點(diǎn)8順時(shí)針旋轉(zhuǎn)120°得到點(diǎn)C,如果點(diǎn)C也在該拋物線上,那么點(diǎn)A的坐

標(biāo)是

18.(4分)如圖,在RtZXABC中,ZCAB=90°,A8=AC,點(diǎn)。為斜邊8c上一點(diǎn),且

BD=3CD,將△48。沿直線AD翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',則sinNCB'D=

三、解答題:(本大題共7題,滿分78分)

sin60°+3tan30ocos60°

19.(10分)計(jì)算:

l-2cot450+cot30°

20.(10分)二次函數(shù)/(x)=/+"+c的自變量x的取值與函數(shù)),的值列表如下:

x…-2-10…234

y—f(x)-50330-5

(1)根據(jù)表中的信息求二次函數(shù)的解析式,并用配方法求出頂點(diǎn)的坐標(biāo):

(2)請你寫出兩種平移的方法,使平移后二次函數(shù)圖象的頂點(diǎn)落在直線y=x上,并寫

出平移后二次函數(shù)的解析式.

21.(10分)已知:如圖,在梯形ABC。中,AD//BC,AD=4,BC=6,對(duì)角線80,AC

相交于點(diǎn)E,過點(diǎn)A作A尸〃。C,交對(duì)角線BO于點(diǎn)F.

BF

(1)求--的值;

EF

(2)設(shè)n=二AD=bf請用向量2、%表示向量族.

22.(10分)圖1是一種自卸貨車,圖2是該貨車的示意圖,貨箱側(cè)面是一個(gè)矩形,長A3

=4米,寬BC=2米,初始時(shí)點(diǎn)A、B、尸在同一水平線上,車廂底部AB離地面的高度

為1.3米.卸貨時(shí)貨箱在千斤頂?shù)淖饔孟吕@著點(diǎn)A旋轉(zhuǎn),箱體底部AB形成不同角度的斜

坡.

圖1圖2

(1)當(dāng)斜坡AB的坡角為37°時(shí),求車廂最高點(diǎn)C離地面的距離;

(2)點(diǎn)A處的轉(zhuǎn)軸與后車輪轉(zhuǎn)軸(點(diǎn)E處)的水平距離叫做安全軸距,已知該車的安全

軸距為0.7〃?.貨廂對(duì)角線AC、80的交點(diǎn)G是貨廂側(cè)面的重心,卸貨時(shí)如果A、G兩點(diǎn)

的水平距離小于安全軸距時(shí),會(huì)發(fā)生車輛傾覆安全事故.

當(dāng)斜坡AB的坡角為45°時(shí),根據(jù)上述車輛設(shè)計(jì)技術(shù)參數(shù),該貨車會(huì)發(fā)生車輛傾覆安全

事故嗎?試說明你的理由.(精確到0.1米,參考值:sin37°?=0.60,cos37°-0.80,tan37

%0.75,71,1.4142)

23.(12分)如圖,己知RtZ\ABC中,ZACB=90°,射線CD交AB于點(diǎn)。,點(diǎn)E是CO

上一點(diǎn),且NAEC=NABC,聯(lián)結(jié)BE.

(1)求證:XACDsXEBD:

(2)如果CD平分NAC8,求證:A^^IED-EC.

D

C

24.(12分)如圖,拋物線)=—32+昔+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,C為線段

0A上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作x軸的垂線,交直線AB于點(diǎn)。,交該拋物線于點(diǎn)E.

(1)求直線AB的表達(dá)式,直接寫出頂點(diǎn)時(shí)的坐標(biāo);

(2)當(dāng)以8,E,。為頂點(diǎn)的三角形與△CD4相似時(shí),求點(diǎn)C的坐標(biāo);

點(diǎn)。為頂點(diǎn)作/8Z)E=/A,射線交邊AB于點(diǎn)E,過點(diǎn)8作射線OE的垂線,垂足

為點(diǎn)F.

(1)當(dāng)點(diǎn)。是邊AC中點(diǎn)時(shí),求tan/ABO的值;

(2)求證:AD?BF=BC,DE:

(3)當(dāng)。E:EF=3:1時(shí),求AE:EB.

2021-2022學(xué)年上海市徐匯區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(一模)

參考答案與試題解析

一、選擇題:(本大題共6題,每題4分,滿分24分)【下列各題的四個(gè)選項(xiàng)中,有且只有

一個(gè)選項(xiàng)是正確的,選擇正確項(xiàng)的代號(hào)并填涂在答題紙的相應(yīng)位置上】

1.(4分)在△ABC中,NC=90°,AB=5,BC=4,則sin4的值是()

4334

A.-B?一C.一D.一

5543

【解答】解:在AABC中,ZC=90°,AB=5fBC=4f

則si但器=$

故選:A.

2.(4分)如圖,已知AB〃CD〃EF,BD:DF=2:3,那么下列結(jié)論中,正確的是()

A.CD-.EF=2:5B.AB:CD=2:5C.AC:AE=2:5D.CE:EA=2:5

【解答】解:VAB//CD//EF,

BDAC2

''DF~CE~3

.DB2AC2

"BF~2+3~AE~5

故選:C.

3.(4分)無人機(jī)在空中點(diǎn)A處觀察地面上的小麗所在位置點(diǎn)B處的俯角是50°,那么小

麗在地面點(diǎn)B處觀察空中點(diǎn)A處的仰角是()

A.40°B.50°C.60°D.70°

【解答】解:因?yàn)閺狞c(diǎn)A看點(diǎn)8的俯角與從點(diǎn)8看點(diǎn)4的仰角互為內(nèi)錯(cuò)角,大小相等.

所以無人機(jī)在空中點(diǎn)A處觀察地面上的小麗所在位置點(diǎn)B處的俯角是50°,

小麗在地面點(diǎn)B處觀察空中點(diǎn)A處的仰角是50°.

故選:B.

4.(4分)已知點(diǎn)C是線段AB的中點(diǎn),下列結(jié)論中正確的是()

T1T

A.AC=BCB.AC+BC=0C.BCD.\CA\=^\BA\

【解答】解:???點(diǎn)C是線段AB的中點(diǎn),

TTT—>TT1T—>1

:.AC=CBxAC+BC=0;8C=—#8;\CA\=^BA\

;.A,B,C錯(cuò)誤,力正確,

故選:D.

5.(4分)下列對(duì)二次函數(shù)y=-2(尤+1)2+3的圖象的描述中,不正確的是()

A.拋物線開口向下

B.拋物線的對(duì)稱軸是直線》=-1

C.拋物線與y軸的交點(diǎn)坐標(biāo)是(0,3)

D.拋物線的頂點(diǎn)坐標(biāo)是(-1,3)

【解答】解:A、?."=-2<0,

拋物線的開口向下,正確,不合題意;

B、對(duì)稱軸為直線x=-l,故本小題正確,不合題意;

C、令x=0,貝!Jy=-2+3=1,

所以拋物線與y軸的交點(diǎn)坐標(biāo)是(0,1),故不正確,符合題意;

。、拋物線的頂點(diǎn)坐標(biāo)是(-1,3),故本小題正確,不合題意;

故選:C.

6.(4分)如圖,在AABC中,ZACB=90°,CD、CE分別是斜邊48上的高和中線,下

列結(jié)論不一定成立的是()

CD

B.tanZECB=

C.CD2=AD'DBD.BC2=2DB^EC

【解答】解::/4C8=NCD4=90°,

AZA+ZACD=90°,NDCB+NACD=90°,

:.ZA=ZDCB,

故A成立;

,:CE是RtAACB斜邊上的中線,

:.CE=BE,

:?/ECB=/EBC,

CD

:.tanZECB=tanZEBC=髭,

YE是AB的中點(diǎn),

:.AE=BD+DE,

9

:AD=AE+DEf

:.AD^DB,

CD

???tanNECBH器,

故8不成立;

VZACB=ZCDA=90°,

/.ZA=ZDCB,

AABCD^ACAD,

.CDDB

??—,

ADCD

:.CD2=AD'DB,

故C成立;

?:XBCDSXBAC,

,BCBD

??=,

BABC

:.BC2=BD'AB,

:CE是斜邊4B上的中線,

:.AB=2CE,

:.Bd=2BD*CE,

故D正確,

故選:B.

二、填空題:(本大題共12題,每題4分,滿分48分)【請將結(jié)果直接填入答題紙的相應(yīng)

位置】

T1TT3T1

7.(4分)計(jì)算:2Q—?。╝-4b)=-a+2b.

2~2

【解答】解:2a-1(a-4b)

T1T?

=2Q—2。+2b

3—*一

=2a+2b,

3Tt

故答案為:-Q+26,

2

8.(4分)冬日暖陽,下午4點(diǎn)時(shí)分,小明在學(xué)校操場曬太陽,身高1.5米的他,在地面上

的影長為2米,則此時(shí)高度為9米的旗桿在地面的影長為12米.

【解答】解:設(shè)旗桿的高度為x米,根據(jù)題意得:

2X

1.5一9,

解得:x=12.

故答案為:12.

9.(4分)將拋物線y=2?+3先向左平移1個(gè)單位,再向下平移4個(gè)單位后,所得拋物線

的表達(dá)式是y=2(x+l)2-1.

【解答】解:將拋物線y=2?+3先向左平移1個(gè)單位,再向下平移4個(gè)單位后,所得拋

物線的表達(dá)式是y=2(x+1)2+3-4,即y=2(x+1)2-1,

故答案為:y—2(x+1)2-1.

10.(4分)如果點(diǎn)A(2,yi),B(5,”)在二次函數(shù)y=/-2x+〃圖象上,那么viVV2

(填>、=或<).

【解答】解:???二次函數(shù)y=/-2x+〃的圖象的對(duì)稱軸是直線x=l,

在對(duì)稱軸的右面),隨x的增大而增大,

,二點(diǎn)A(2,.yi)、B(5,”)是二次函數(shù)y=7-2x+”的圖象上兩點(diǎn),

1<2<5,

故答案為:<.

11.(4分)如圖,某人跳芭蕾舞,踮起腳尖時(shí)顯得下半身比上半身更修長.若以裙子腰節(jié)

為分界點(diǎn),身材比例正好符合黃金分割,已知從腳尖到頭頂高度為176cm,那么裙子的

腰節(jié)到腳尖的距離為(88西-88)cm.(結(jié)果保留根號(hào))

【解答】解:設(shè)裙子的腰節(jié)到腳尖的距離為XO",

???以裙子腰節(jié)為分界點(diǎn),身材比例正好符合黃金分割,已知從腳尖到頭頂高度為176cm,

xV5-1

??,

1762

Ax=88V5-88,

即裙子的腰節(jié)到腳尖的距離為(88函-88)cm,

故答案為:(8875-88).

12.(4分)如圖,ZVIBC中,AB=8,BC=7,點(diǎn)、D、E分別在邊48、AC上,已知4E=4,

7

ZAED=/B,則線段DE的長為-.

.DEAE

BCAB

.DE4

??=—,

78

7

:.DE=

7

故答案為:-

13.(4分)如圖,BE是△ABC的角平分線,過點(diǎn)E1作E£>〃8c交邊A8于點(diǎn)。.如果AO

=3,DE=2,則3C的長度為芋.

A

【解答】解:???3E平分NA8C,

,NABE=NCBE.

?:DE//BC,

:.ZDEB=ZCBE,

:.NABE=NDEB.

:.BD=DE,

YDE〃BC,

:.AADE^AABC,

,ADDE

^AB~BC

VAD=3,DE=2,

?32

,?3+2―BC

;.BC=學(xué),

故答案為:y.

14.(4分)二次函數(shù)的圖象如圖所示,對(duì)稱軸為直線x=-1,根據(jù)圖中信息可求得該二次

函數(shù)的解析式為y=-/一2X+3

由題意得:

c=3

a+b+c=0

-投=T

2a

a=-1

解得:b=-2

c=3

...二次函數(shù)的解析式為:y=-f-2x+3,

故答案為:y=-/-2x+3.

15.(4分)小明同學(xué)逛書城,從地面一樓乘自動(dòng)扶梯,該扶梯移動(dòng)了13米,到達(dá)距離地面

5米高的二樓,則該自動(dòng)扶梯的坡度i=5:12.

【解答】解:由勾股定理得:小明移動(dòng)的水平距離為:―32—52=12(米),

則該自動(dòng)扶梯的坡度i=5:12,

故答案為:5:12.

TTTTT1.T

16.(4分)如圖,已知點(diǎn)G是△ABC的重心,記向量==則向量4G=二a+

-3

1T—T

-b.(用向量XQ+油的形式表示,其中x,y為實(shí)數(shù))

【解答】解:如圖,延長AE到〃,使得EH=AE,連接6”,CH.

*:AE=EHfBE=EC,

???四邊形A3”。是平行四邊形,

:.AC=BH,AC//BH,

*:AH=ABBH=a+b,

TG是重心,

:.AG=|AE,

":AE=EH,

:.AG=

1TT1T1

-a+=-Q+-

36)33

IT1-

故答案為:b+”

A

17.(4分)如圖,已知點(diǎn)A是拋物線y=/圖象上一點(diǎn),將點(diǎn)4向下平移2個(gè)單位到點(diǎn)B,

再把點(diǎn)A繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120。得到點(diǎn)C,如果點(diǎn)。也在該拋物線上,那么點(diǎn)A的坐

【解答】解:如圖,過。點(diǎn)作C£>J_x軸于作于區(qū)

VZBAC=120°,

AZEAC=120°-90°=30°,

???AB=2,

?'?AC=48=2,

:.AE=X2=V3,CE=^AC=1,

設(shè)A(m,zw2),則C(B—m,團(tuán)2+1),

丁點(diǎn)C也在該拋物線上,

.*./n2+l=(V3—m)2,

解得m=字,

18.(4分)如圖,在Rt/XABC中,ZCAB=90°,AB=AC,點(diǎn)。為斜邊BC上一點(diǎn),且

8O=3CQ,將△4BO沿直線AD翻折,點(diǎn)8的對(duì)應(yīng)點(diǎn)為",則sin/CB'D=—

【解答】解:過點(diǎn)。作OE1_A8于點(diǎn)E,

???將△A3。沿直線AD翻折,

:.AB=AB\ZBAD=ZB'AD,

9:AB=AC,

:.AC=AB\

:.ZAB'C=ZACB\

設(shè)N8AC=x,/CB'D=a,NC4Q=0,

VAB=ACfZCAB=90°,

ZB=ZACB=ZAB'D=45°,

:.2(a+45°)+x=180°,

.\2a=90°-x,

又?.?N8Zr>+/8A£>=N8AC+NCA8,

:.2(x+0)=90°+x,

???20=90°-x,

,a=S,

:.ZCB'D=ZCADf

':CD.LAB,DELAB.

:.CA//DE9

CDAE1

JZCAD=ZADE=ZCB'D,—=—=

BDBE3

■:BE=DE,

,AE1

??—―,

DE3

設(shè)AE=a,則力E=3a,

:.AD=y/AE2+DE2=VTOw,

...sin/CB'。=$出/4?!?蔡=急=喘

故答案為:-

10

三、解答題:(本大題共7題,滿分78分)

sin6Q0+3tan3Q°-cos60°

19.(10分)計(jì)算:

l-2cot450+cot30°

sin6Q0+3tan30ocos60°

【解答】解:

l-2cot450+cot30°

v^3-1ov/3y1

-21D入

1—2X1+V3

73,V3

T十彳

/3-1

73-1

3+y3

~?T

20.(10分)二次函數(shù)f(x)=/+6x+c的自變量x的取值與函數(shù)y的值列表如下:

x…-2-10234

y=f(x)-503…30-5

(1)根據(jù)表中的信息求二次函數(shù)的解析式,并用配方法求出頂點(diǎn)的坐標(biāo);

(2)請你寫出兩種平移的方法,使平移后二次函數(shù)圖象的頂點(diǎn)落在直線y=x上,并寫

出平移后二次函數(shù)的解析式.

【解答】解:(1)把(-1,0),(0,3),(3,0)分別代入〉=,〉+公+。(aWO)中,得

(a—b+c=0

jc=3.

(9Q+3b+c=0

(a=—1

解得{b=2.

則該二次函數(shù)的解析式為:y=-/+2x+3,

Vy=-f+2]+3=-(x-1)2+4,

???頂點(diǎn)的坐標(biāo)為(1,4);

(2).??二次函數(shù)f(x)=/+4;+。的頂點(diǎn)坐標(biāo)(1,4);

???二次函數(shù)圖象向右平移3個(gè)單位后拋物線的頂點(diǎn)為(4,4)或向下平移3個(gè)單位后拋

物線的頂點(diǎn)為(1,1)落在直線y=x上,則此時(shí)拋物線的解析式為:y=-(x-4)2+4

或y=-(x-1)2+l.

21.(10分)已知:如圖,在梯形A8CQ中,AD//BC,AQ=4,BC=6,對(duì)角線BD,AC

相交于點(diǎn)過點(diǎn)A作A廠〃OC,交對(duì)角線8。于點(diǎn)F.

BF

(1)求力的值;

EF

(2)設(shè)48=a,AD=b9請用向量a、b表示向量

【解答】解:(1)?:AOHBC,

:.MADEsXCBE,

.ADDE4E2

??BC-BE-CE-3’

YA/〃CO,

aAEEF2

CE~DE~3

設(shè)EF=4x,則OE=6x,BF=5x,

.BF5

??-,

EF4

(2)VAD=4,BC=6,AD//BC,

:.BC=^AD,/XADEs^CBE,

T3TAEAD2

:.BC=56,—=----=一,

2ECBC3

2

:.AE=^ACf

**AB—a,

TT

?\BA=-a,

:.AC=BC-BA

3TT

=#+Q,

T2T

:.AE=AC

=虧(/+。)

3T2T

=Fb+qQ-

22.(10分)圖1是一種自卸貨車,圖2是該貨車的示意圖,貨箱側(cè)面是一個(gè)矩形,長A3

=4米,寬BC=2米,初始時(shí)點(diǎn)A、B、尸在同一水平線上,車廂底部AB離地面的高度

為1.3米.卸貨時(shí)貨箱在千斤頂?shù)淖饔孟吕@著點(diǎn)A旋轉(zhuǎn),箱體底部AB形成不同角度的斜

坡.

(2)點(diǎn)A處的轉(zhuǎn)軸與后車輪轉(zhuǎn)軸(點(diǎn)E處)的水平距離叫做安全軸距,已知該車的安全

軸距為0.7m.貨廂對(duì)角線AC、8。的交點(diǎn)G是貨廂側(cè)面的重心,卸貨時(shí)如果A、G兩點(diǎn)

的水平距離小于安全軸距時(shí),會(huì)發(fā)生車輛傾覆安全事故.

當(dāng)斜坡A8的坡角為45°時(shí),根據(jù)上述車輛設(shè)計(jì)技術(shù)參數(shù),該貨車會(huì)發(fā)生車輛傾覆安全

事故嗎?試說明你的理由.(精確到0.1米,參考值:sin37°k0.60,cos370*0.80,tan37

比0.75,V2?1.4142)

【解答】解:過點(diǎn)C作C7/LAF,垂足為H,過點(diǎn)B作BPLAF,垂足為P,過點(diǎn)B作

BQ±CH,垂足為Q,

圖2

則四邊形為矩形,

:.BP=QH,

在RtZXABP中,8P=ABsin37°=4X0.6=24(m),

:.BP=QH=2A(w),

':BQ//AP,

;.NBAF=NQBA=37°,

/.ZCBQ^ZCBA-ZQBA^90°-37°=53°,

VZBQC=90°,

...NBCQ=90°-NCBQ=37°,

在Rt^BCQ中,Ce=BCcos370=2*0.8=1.6(m),

6+2.4+13=5.3(n?),

答:車廂最高點(diǎn)C離地面的距離是5.3米;

(2)不會(huì)發(fā)生安全事故,

理由是:過點(diǎn)G作GOLAF,垂足為O,過點(diǎn)C作凡垂足為M,交AB于點(diǎn)/,

過點(diǎn)8作8NL4凡垂足為N,過點(diǎn)B作8KJ_CM,垂足為K,

c

圖2

則四邊形BNMK為矩形,

:?BN=KM,

在RtZXABN中,8N=A8sin45°=4x竿=2/(機(jī)),

:.BN=KM=2V2(m),

9:BK//AN,

:.ZBAN=ZKBA=45°,

:.ZCBK=ZCBA-ZKBA=90°-45°=45°,

在RtZ\BCK中,BK=BCcos45°=2x¥=7^(加),

:.BK=CK=V2(m),

在Rt^BKI中,

,:ZKBA=45Q,

:.BK=KI=V2(〃?),

:.1M=KM-Kl=V2Cm),

在Rt/\AMI中,

:NBAF=45°,

:.IM=AM=V2(〃i),

'JCM//GO,

.AGAO

"CG-OM'

:AG=CG,

:.AO=OM=^AM=?0.71(/?),

V0.71>0.7,

???不會(huì)發(fā)生安全事故.

23.(12分)如圖,已知RtZ\48C中,ZACB=90°,射線C£>交A8于點(diǎn)D,點(diǎn)E是CZ)

上一點(diǎn),且NAEC=/A8C,聯(lián)結(jié)BE.

(1)求證:MACDs叢EBD;

(2)如果CD平分NAC2,求證:A?=2ED*EC.

C"---------------------

【解答】證明:(1)VZAEC^ZABC,NADE=/BDC,

:.△ADEs^CDB,

.ADDE

CDBD

又;NADC=NEDB,

:.△ACQSAEBQ;

(2),:AADESACDB,

:.ZDCB^ZEAB,

':/XACD^/^EBD,

:.NACD=NEBD,

VZACB=90Q,

NEAB+NEBD=ZDCB+ZACD=90°,

:.N4E8=90°,

?.^C£)平分NACB,

AZACD=ZBCD=45°,

;.NEBD=NEAB=45°,

:.EA=EB,

...△EAB是等腰直角三角形,

AZEAD=ZACE,ZAED=ZCEA,

■:XAEDsACEA,

.AEEC

ED-AE'

:.AE1=ED-EC,

":AE1+EB2=AB2,

:.2AE?-=AB1,

:.AEr=^AB2,

1

:.-AB92=ED-EC,

2

:.AB2=2ED'EC.

24.(12分)如圖,拋物線)=—學(xué)什2與x軸交于點(diǎn)A,與),軸交于點(diǎn)B,C為線段

0A上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作x軸的垂線,交直線AB于點(diǎn)。,交該拋物線于點(diǎn)E.

(1)求直線AB的表達(dá)式,直接寫出頂點(diǎn)用的坐標(biāo);

(2)當(dāng)以B,E,。為頂點(diǎn)的三角形與△CD4相似時(shí),求點(diǎn)C的坐標(biāo);

【解答】解:(1)令y=0,則一冬+學(xué)x+2=0,

?\x=或x=3,

(3,0),

令x=0,則y=2,

:.B(0,2),

設(shè)直線AB的解析式為y=kx+b,

.(b=2

,+&=0,

U=2

,y=一|x+2,

丁尸一冬+季+2=(X-1)2+瑞,

549

1?M(―,—);

412

(2)VZADC=ZBDE,ZACD=90°,

.?.△BED是直角三角形,

設(shè)CG,0),

①如圖1,當(dāng)NBEC=90°,時(shí),BE//AC,

:.E(t,2),

¥+學(xué)什2=2,

.".z=0(舍)或r=I,

5

:.C(-,0);

2

②如圖2,當(dāng)NEBD=90°時(shí),

過點(diǎn)E作EQly軸交于點(diǎn)Q,

NBAO+/ABO=90°,ZABO+ZQBE=90°,

NQBE=NBAO,

△ABO-XBEQ,

AO—,即二=三

BQEQBQt

BQ=

E(/,2+%),

,349,10

n2+乎=-V+丁-t+2,

11

f=0(舍)或右皆,

11

C(——,0);

8

115

綜上所述:C點(diǎn)的坐標(biāo)為(T0)或(?0);

(3)如圖3,作5A的垂直平分線交x軸于點(diǎn)Q,連接B。,過點(diǎn)B作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論