2019年北京市高考數(shù)學(xué)試卷(文科)(含解析)_第1頁
2019年北京市高考數(shù)學(xué)試卷(文科)(含解析)_第2頁
2019年北京市高考數(shù)學(xué)試卷(文科)(含解析)_第3頁
2019年北京市高考數(shù)學(xué)試卷(文科)(含解析)_第4頁
2019年北京市高考數(shù)學(xué)試卷(文科)(含解析)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2019年北京市高考數(shù)學(xué)試卷(文科)一、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。1.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)2.已知復(fù)數(shù)z=2+i,則A. B. C.3 D.53.下列函數(shù)中,在區(qū)間(0,+)上單調(diào)遞增是A. B.y= C. D.4.執(zhí)行如圖所示的程序框圖,輸出的s值為A.1 B.2 C.3 D.45.已知雙曲線(a>0)的離心率是則a=A. B.4 C.2 D.6.設(shè)函數(shù)f(x)=cosx+bsinx(b為常數(shù)),則“b=0”是“f(x)為偶函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.8.如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為A4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ第二部分(非選擇題共110分)二、填空題共6小題,每小題5分,共30分。9.已知向量=(-4,3),=(6,m),且,則m=__________10.若x,y滿足則的最小值為__________,最大值為__________.11.設(shè)拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.則以F為圓心,且與l相切的圓的方程為__________.12.某幾何體是由一個(gè)正方體去掉一個(gè)四棱柱所得,其三視圖如圖所示.如果網(wǎng)格紙上小正方形的邊長為1,那么該幾何體的體積為__________.13.已知l,m是平面外的兩條不同直線.給出下列三個(gè)論斷:①l⊥m;②m∥;③l⊥.以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:__________.14.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.三、解答題共6小題,共80分。解答應(yīng)寫出文字說明,演算步驟或證明過程。15.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.16.設(shè){an}是等差數(shù)列,a1=–10,且a2+10,a3+8,a4+6成等比數(shù)列.(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)記{an}的前n項(xiàng)和為Sn,求Sn的最小值.17.改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.18.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說明理由.19.已知橢圓的右焦點(diǎn)為,且經(jīng)過點(diǎn).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)O原點(diǎn),直線與橢圓C交于兩個(gè)不同點(diǎn)P,Q,直線AP與x軸交于點(diǎn)M,直線AQ與x軸交于點(diǎn)N,若|OM|·|ON|=2,求證:直線l經(jīng)過定點(diǎn).20.已知函數(shù)(Ⅰ)求曲線的斜率為1的切線方程;(Ⅱ)當(dāng)時(shí),求證:;(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時(shí),求a的值. 絕密★本科目考試啟用前2019年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)(文)(北京卷)本試卷共5頁,150分??荚嚂r(shí)長120分鐘??忌鷦?wù)必將答案答在答題卡上,在試卷上作答無效??荚嚱Y(jié)束后,將本試卷和答題卡一并交回。第一部分(選擇題共40分)一、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。1.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)【答案】C【解析】【分析】根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.2.已知復(fù)數(shù)z=2+i,則A. B. C.3 D.5【答案】D【解析】【分析】題先求得,然后根據(jù)復(fù)數(shù)的乘法運(yùn)算法則即得.【詳解】∵故選D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的定義等知識,屬于基礎(chǔ)題..3.下列函數(shù)中,在區(qū)間(0,+)上單調(diào)遞增的是A. B.y= C. D.【答案】A【解析】【分析】由題意結(jié)合函數(shù)的解析式考查函數(shù)的單調(diào)性即可.【詳解】函數(shù),在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,故選A.【點(diǎn)睛】本題考查簡單的指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性,注重對重要知識、基礎(chǔ)知識的考查,蘊(yùn)含數(shù)形結(jié)合思想,屬于容易題.4.執(zhí)行如圖所示的程序框圖,輸出的s值為A.1 B.2 C.3 D.4【答案】B【解析】【分析】根據(jù)程序框圖中條件逐次運(yùn)算即可.【詳解】運(yùn)行第一次,,,運(yùn)行第二次,,,運(yùn)行第三次,,,結(jié)束循環(huán),輸出,故選B.【點(diǎn)睛】本題考查程序框圖,屬于容易題,注重基礎(chǔ)知識、基本運(yùn)算能力的考查.5.已知雙曲線(a>0)的離心率是則a=A. B.4 C.2 D.【答案】D【解析】【分析】本題根據(jù)根據(jù)雙曲線的離心率的定義,列關(guān)于a的方程求解.【詳解】∵雙曲線的離心率,,∴,解得,故選D.【點(diǎn)睛】本題主要考查雙曲線的離心率的定義,雙曲線中a,b,c的關(guān)系,方程的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.6.設(shè)函數(shù)f(x)=cosx+bsinx(b為常數(shù)),則“b=0”是“f(x)為偶函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】【分析】根據(jù)定義域?yàn)镽的函數(shù)為偶函數(shù)等價(jià)于進(jìn)行判斷.【詳解】時(shí),,為偶函數(shù);為偶函數(shù)時(shí),對任意的恒成立,,得對任意的恒成立,從而.從而“”是“為偶函數(shù)”的充分必要條件,故選C.【點(diǎn)睛】本題較易,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.7.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.【答案】A【解析】【分析】由題意得到關(guān)于的等式,結(jié)合對數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運(yùn)算.8.如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為A.4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ【答案】B【解析】【分析】由題意首先確定面積最大時(shí)點(diǎn)P的位置,然后結(jié)合扇形面積公式和三角形面積公式可得最大的面積值.【詳解】觀察圖象可知,當(dāng)P為弧AB的中點(diǎn)時(shí),陰影部分的面積S取最大值,此時(shí)∠BOP=∠AOP=π-β,面積S的最大值為+S△POB+S△POA=4β+.故選B.【點(diǎn)睛】本題主要考查閱讀理解能力、數(shù)學(xué)應(yīng)用意識、數(shù)形結(jié)合思想及數(shù)學(xué)式子變形和運(yùn)算求解能力,有一定的難度.關(guān)鍵觀察分析區(qū)域面積最大時(shí)的狀態(tài),并將面積用邊角等表示.第二部分(非選擇題共110分)二、填空題共6小題,每小題5分,共30分。9.已知向量=(-4,3),=(6,m),且,則m=__________.【答案】8.【解析】【分析】利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.10.若x,y滿足則的最小值為__________,最大值為__________.【答案】(1)..(2).1.【解析】【分析】作出可行域,移動目標(biāo)函數(shù)表示的直線,利用圖解法求解.【詳解】作出可行域如圖陰影部分所示.設(shè),則.當(dāng)直線經(jīng)過點(diǎn)時(shí),取最小值,經(jīng)過點(diǎn)時(shí),取最大值.【點(diǎn)睛】本題是簡單線性規(guī)劃問題的基本題型,根據(jù)“畫、移、解”等步驟可得解.題目難度不大題,注重了基礎(chǔ)知識、基本技能的考查.11.設(shè)拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.則以F為圓心,且與l相切的圓的方程為__________.【答案】(x-1)2+y2=4.【解析】【分析】由拋物線方程可得焦點(diǎn)坐標(biāo),即圓心,焦點(diǎn)到準(zhǔn)線距離即半徑,進(jìn)而求得結(jié)果.【詳解】拋物線y2=4x中,2p=4,p=2,焦點(diǎn)F(1,0),準(zhǔn)線l的方程為x=-1,以F為圓心,且與l相切的圓的方程為(x-1)2+y2=22,即為(x-1)2+y2=4.【點(diǎn)睛】本題主要考查拋物線的焦點(diǎn)坐標(biāo),拋物線的準(zhǔn)線方程,直線與圓相切的充分必要條件等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.12.某幾何體是由一個(gè)正方體去掉一個(gè)四棱柱所得,其三視圖如圖所示.如果網(wǎng)格紙上小正方形的邊長為1,那么該幾何體的體積為__________.【答案】40.【解析】【分析】本題首先根據(jù)三視圖,還原得到幾何體,根據(jù)題目給定的數(shù)據(jù),計(jì)算幾何體的體積.屬于中等題.【詳解】如圖所示,在棱長為4的正方體中,三視圖對應(yīng)的幾何體為正方體去掉棱柱之后余下的幾何體,幾何體的體積.【點(diǎn)睛】(1)求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解;(2)若所給幾何體的體積不能直接利用公式得出,則常用等積法、分割法、補(bǔ)形法等方法進(jìn)行求解.13.已知l,m是平面外的兩條不同直線.給出下列三個(gè)論斷:①l⊥m;②m∥;③l⊥.以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:__________.【答案】如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】【分析】將所給論斷,分別作條件、結(jié)論加以分析.【詳解】將所給論斷,分別作條件、結(jié)論,得到如下三個(gè)命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點(diǎn)睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.14.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.【答案】(1).130.(2).15.【解析】【分析】由題意可得顧客需要支付的費(fèi)用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價(jià)為元,元時(shí),李明得到的金額為,符合要求.元時(shí),有恒成立,即,即元.所以的最大值為.【點(diǎn)睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識?數(shù)學(xué)式子變形與運(yùn)算求解能力,以實(shí)際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).三、解答題共6小題,共80分。解答應(yīng)寫出文字說明,演算步驟或證明過程。15.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由題意列出關(guān)于a,b,c的方程組,求解方程組即可確定b,c的值;(Ⅱ)由題意結(jié)合正弦定理和兩角和差正余弦公式可得的值.【詳解】(Ⅰ)由題意可得:,解得:.(Ⅱ)由同角三角函數(shù)基本關(guān)系可得:,結(jié)合正弦定理可得:,很明顯角C為銳角,故,故.【點(diǎn)睛】本題主要考查余弦定理、正弦定理的應(yīng)用,兩角和差正余弦公式的應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16.設(shè){an}是等差數(shù)列,a1=–10,且a2+10,a3+8,a4+6成等比數(shù)列.(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)記{an}的前n項(xiàng)和為Sn,求Sn的最小值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由題意首先求得數(shù)列的公差,然后利用等差數(shù)列通項(xiàng)公式可得的通項(xiàng)公式;(Ⅱ)首先求得的表達(dá)式,然后結(jié)合二次函數(shù)的性質(zhì)可得其最小值.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,因?yàn)槌傻缺葦?shù)列,所以,即,解得,所以(Ⅱ)由(Ⅰ)知,所以;當(dāng)或者時(shí),取到最小值.【點(diǎn)睛】等差數(shù)列基本量的求解是等差數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等差數(shù)列的有關(guān)公式并能靈活運(yùn)用.17.改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.【答案】(Ⅰ)400人;(Ⅱ);(Ⅲ)見解析.【解析】【分析】(Ⅰ)由題意利用頻率近似概率可得滿足題意的人數(shù);(Ⅱ)利用古典概型計(jì)算公式可得上個(gè)月支付金額大于2000元的概率;(Ⅲ)結(jié)合概率統(tǒng)計(jì)相關(guān)定義給出結(jié)論即可.【詳解】(Ⅰ)由圖表可知僅使用A的人數(shù)有30人,僅使用B的人數(shù)有25人,由題意知A,B兩種支付方式都不使用的有5人,所以樣本中兩種支付方式都使用的有,所以全校學(xué)生中兩種支付方式都使用的有(人).(Ⅱ)因?yàn)闃颖局袃H使用B的學(xué)生共有25人,只有1人支付金額大于2000元,所以該學(xué)生上個(gè)月支付金額大于2000元的概率為.(Ⅲ)由(Ⅱ)知支付金額大于2000元的概率為,因?yàn)閺膬H使用B的學(xué)生中隨機(jī)調(diào)查1人,發(fā)現(xiàn)他本月的支付金額大于2000元,依據(jù)小概率事件它在一次試驗(yàn)中是幾乎不可能發(fā)生的,所以可以認(rèn)為僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化,且比上個(gè)月多.【點(diǎn)睛】本題主要考查古典概型概率公式及其應(yīng)用,概率的定義與應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.18.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說明理由.【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】【分析】(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點(diǎn).【詳解】(Ⅰ)證明:因?yàn)槠矫?所以;因?yàn)榈酌媸橇庑?,所?因?yàn)?平面,所以平面.(Ⅱ)證明:因?yàn)榈酌媸橇庑吻?,所以為正三角形,所?因?yàn)?所以;因?yàn)槠矫?,平?所以;因?yàn)樗云矫?,平?所以平面平面.(Ⅲ)存在點(diǎn)為中點(diǎn)時(shí),滿足平面;理由如下:分別取的中點(diǎn),連接,在三角形中,且;在菱形中,為中點(diǎn),所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19.已知橢圓的右焦點(diǎn)為,且經(jīng)過點(diǎn).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)O為原點(diǎn),直線與橢圓C交于兩個(gè)不同點(diǎn)P,Q,直線AP與x軸交于點(diǎn)M,直線AQ與x軸交于點(diǎn)N,若|OM|·|ON|=2,求證:直線l經(jīng)過定點(diǎn).【答案】(Ⅰ);(Ⅱ)見解析.【解析】【分析】(Ⅰ)由題意確定a,b的值即可確定橢圓方程;(Ⅱ)設(shè)出直線方程,聯(lián)立直線方程與橢圓方程確定OM,ON的表達(dá)式,結(jié)合韋達(dá)定理確定t的值即可證明直線恒過定點(diǎn).【詳解】(Ⅰ)因?yàn)闄E圓的右焦點(diǎn)為,所以;因?yàn)闄E圓經(jīng)過點(diǎn),所以,所以,故橢圓的方程為.(Ⅱ)設(shè)聯(lián)立得,,,.直線,令得,即;同理可得.因?yàn)?所以;,解之得,所以直線方程為,所以直線恒過定點(diǎn).【點(diǎn)睛】解決直線與橢圓的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題.20.已知函數(shù).(Ⅰ)求曲線的斜率為1的切線方程;(Ⅱ)當(dāng)時(shí),求證:;(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時(shí),求a的值.【答案】(Ⅰ)和.(Ⅱ)見解析;(Ⅲ).【解析】【分析】(Ⅰ)首先求解導(dǎo)函數(shù),然后利用導(dǎo)函數(shù)求得切點(diǎn)的橫坐標(biāo),據(jù)此求得切點(diǎn)坐標(biāo)即可確定切線方程;(Ⅱ)由題意分別證得和即可證得題中的結(jié)論;(Ⅲ)由題意結(jié)合(Ⅱ)中的結(jié)論分類討論即可求得a的值.【詳解】(Ⅰ),令得或者.當(dāng)時(shí),,此時(shí)切線方程為,即;當(dāng)時(shí),,此時(shí)切線方程為,即;綜上可得所求切線方程為和.(Ⅱ)設(shè),,令得或者,所以當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);而,所以,即;同理令,可求其最小值為,所以,即,綜上可得.(Ⅲ)由(Ⅱ)知,所以是中的較大者,若,即時(shí),;若,即時(shí),;所以當(dāng)最小時(shí),,此時(shí).【點(diǎn)睛】本題主要考查利用導(dǎo)函數(shù)研究函數(shù)的切線方程,利用導(dǎo)函數(shù)證明不等式的方法,分類討論的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.絕密★本科目考試啟用前2019年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)(文)(北京卷)本試卷共5頁,150分??荚嚂r(shí)長120分鐘??忌鷦?wù)必將答案答在答題卡上,在試卷上作答無效??荚嚱Y(jié)束后,將本試卷和答題卡一并交回。第一部分(選擇題共40分)一、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。1.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)【答案】C【解析】【分析】根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.2.已知復(fù)數(shù)z=2+i,則A. B. C.3 D.5【答案】D【解析】【分析】題先求得,然后根據(jù)復(fù)數(shù)的乘法運(yùn)算法則即得.【詳解】∵故選D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的定義等知識,屬于基礎(chǔ)題..3.下列函數(shù)中,在區(qū)間(0,+)上單調(diào)遞增的是A. B.y= C. D.【答案】A【解析】【分析】由題意結(jié)合函數(shù)的解析式考查函數(shù)的單調(diào)性即可.【詳解】函數(shù),在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,故選A.【點(diǎn)睛】本題考查簡單的指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性,注重對重要知識、基礎(chǔ)知識的考查,蘊(yùn)含數(shù)形結(jié)合思想,屬于容易題.4.執(zhí)行如圖所示的程序框圖,輸出的s值為A.1 B.2 C.3 D.4【答案】B【解析】【分析】根據(jù)程序框圖中條件逐次運(yùn)算即可.【詳解】運(yùn)行第一次,,,運(yùn)行第二次,,,運(yùn)行第三次,,,結(jié)束循環(huán),輸出,故選B.【點(diǎn)睛】本題考查程序框圖,屬于容易題,注重基礎(chǔ)知識、基本運(yùn)算能力的考查.5.已知雙曲線(a>0)的離心率是則a=A. B.4 C.2 D.【答案】D【解析】【分析】本題根據(jù)根據(jù)雙曲線的離心率的定義,列關(guān)于a的方程求解.【詳解】∵雙曲線的離心率,,∴,解得,故選D.【點(diǎn)睛】本題主要考查雙曲線的離心率的定義,雙曲線中a,b,c的關(guān)系,方程的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.6.設(shè)函數(shù)f(x)=cosx+bsinx(b為常數(shù)),則“b=0”是“f(x)為偶函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】【分析】根據(jù)定義域?yàn)镽的函數(shù)為偶函數(shù)等價(jià)于進(jìn)行判斷.【詳解】時(shí),,為偶函數(shù);為偶函數(shù)時(shí),對任意的恒成立,,得對任意的恒成立,從而.從而“”是“為偶函數(shù)”的充分必要條件,故選C.【點(diǎn)睛】本題較易,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.7.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.【答案】A【解析】【分析】由題意得到關(guān)于的等式,結(jié)合對數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運(yùn)算.8.如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為A.4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ【答案】B【解析】【分析】由題意首先確定面積最大時(shí)點(diǎn)P的位置,然后結(jié)合扇形面積公式和三角形面積公式可得最大的面積值.【詳解】觀察圖象可知,當(dāng)P為弧AB的中點(diǎn)時(shí),陰影部分的面積S取最大值,此時(shí)∠BOP=∠AOP=π-β,面積S的最大值為+S△POB+S△POA=4β+.故選B.【點(diǎn)睛】本題主要考查閱讀理解能力、數(shù)學(xué)應(yīng)用意識、數(shù)形結(jié)合思想及數(shù)學(xué)式子變形和運(yùn)算求解能力,有一定的難度.關(guān)鍵觀察分析區(qū)域面積最大時(shí)的狀態(tài),并將面積用邊角等表示.第二部分(非選擇題共110分)二、填空題共6小題,每小題5分,共30分。9.已知向量=(-4,3),=(6,m),且,則m=__________.【答案】8.【解析】【分析】利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.10.若x,y滿足則的最小值為__________,最大值為__________.【答案】(1)..(2).1.【解析】【分析】作出可行域,移動目標(biāo)函數(shù)表示的直線,利用圖解法求解.【詳解】作出可行域如圖陰影部分所示.設(shè),則.當(dāng)直線經(jīng)過點(diǎn)時(shí),取最小值,經(jīng)過點(diǎn)時(shí),取最大值.【點(diǎn)睛】本題是簡單線性規(guī)劃問題的基本題型,根據(jù)“畫、移、解”等步驟可得解.題目難度不大題,注重了基礎(chǔ)知識、基本技能的考查.11.設(shè)拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.則以F為圓心,且與l相切的圓的方程為__________.【答案】(x-1)2+y2=4.【解析】【分析】由拋物線方程可得焦點(diǎn)坐標(biāo),即圓心,焦點(diǎn)到準(zhǔn)線距離即半徑,進(jìn)而求得結(jié)果.【詳解】拋物線y2=4x中,2p=4,p=2,焦點(diǎn)F(1,0),準(zhǔn)線l的方程為x=-1,以F為圓心,且與l相切的圓的方程為(x-1)2+y2=22,即為(x-1)2+y2=4.【點(diǎn)睛】本題主要考查拋物線的焦點(diǎn)坐標(biāo),拋物線的準(zhǔn)線方程,直線與圓相切的充分必要條件等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.12.某幾何體是由一個(gè)正方體去掉一個(gè)四棱柱所得,其三視圖如圖所示.如果網(wǎng)格紙上小正方形的邊長為1,那么該幾何體的體積為__________.【答案】40.【解析】【分析】本題首先根據(jù)三視圖,還原得到幾何體,根據(jù)題目給定的數(shù)據(jù),計(jì)算幾何體的體積.屬于中等題.【詳解】如圖所示,在棱長為4的正方體中,三視圖對應(yīng)的幾何體為正方體去掉棱柱之后余下的幾何體,幾何體的體積.【點(diǎn)睛】(1)求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解;(2)若所給幾何體的體積不能直接利用公式得出,則常用等積法、分割法、補(bǔ)形法等方法進(jìn)行求解.13.已知l,m是平面外的兩條不同直線.給出下列三個(gè)論斷:①l⊥m;②m∥;③l⊥.以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:__________.【答案】如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】【分析】將所給論斷,分別作條件、結(jié)論加以分析.【詳解】將所給論斷,分別作條件、結(jié)論,得到如下三個(gè)命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點(diǎn)睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.14.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.【答案】(1).130.(2).15.【解析】【分析】由題意可得顧客需要支付的費(fèi)用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價(jià)為元,元時(shí),李明得到的金額為,符合要求.元時(shí),有恒成立,即,即元.所以的最大值為.【點(diǎn)睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識?數(shù)學(xué)式子變形與運(yùn)算求解能力,以實(shí)際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).三、解答題共6小題,共80分。解答應(yīng)寫出文字說明,演算步驟或證明過程。15.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由題意列出關(guān)于a,b,c的方程組,求解方程組即可確定b,c的值;(Ⅱ)由題意結(jié)合正弦定理和兩角和差正余弦公式可得的值.【詳解】(Ⅰ)由題意可得:,解得:.(Ⅱ)由同角三角函數(shù)基本關(guān)系可得:,結(jié)合正弦定理可得:,很明顯角C為銳角,故,故.【點(diǎn)睛】本題主要考查余弦定理、正弦定理的應(yīng)用,兩角和差正余弦公式的應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16.設(shè){an}是等差數(shù)列,a1=–10,且a2+10,a3+8,a4+6成等比數(shù)列.(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)記{an}的前n項(xiàng)和為Sn,求Sn的最小值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由題意首先求得數(shù)列的公差,然后利用等差數(shù)列通項(xiàng)公式可得的通項(xiàng)公式;(Ⅱ)首先求得的表達(dá)式,然后結(jié)合二次函數(shù)的性質(zhì)可得其最小值.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,因?yàn)槌傻缺葦?shù)列,所以,即,解得,所以(Ⅱ)由(Ⅰ)知,所以;當(dāng)或者時(shí),取到最小值.【點(diǎn)睛】等差數(shù)列基本量的求解是等差數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等差數(shù)列的有關(guān)公式并能靈活運(yùn)用.17.改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.【答案】(Ⅰ)400人;(Ⅱ);(Ⅲ)見解析.【解析】【分析】(Ⅰ)由題意利用頻率近似概率可得滿足題意的人數(shù);(Ⅱ)利用古典概型計(jì)算公式可得上個(gè)月支付金額大于2000元的概率;(Ⅲ)結(jié)合概率統(tǒng)計(jì)相關(guān)定義給出結(jié)論即可.【詳解】(Ⅰ)由圖表可知僅使用A的人數(shù)有30人,僅使用B的人數(shù)有25人,由題意知A,B兩種支付方式都不使用的有5人,所以樣本中兩種支付方式都使用的有,所以全校學(xué)生中兩種支付方式都使用的有(人).(Ⅱ)因?yàn)闃颖局袃H使用B的學(xué)生共有25人,只有1人支付金額大于2000元,所以該學(xué)生上個(gè)月支付金額大于2000元的概率為.(Ⅲ)由(Ⅱ)知支付金額大于2000元的概率為,因?yàn)閺膬H使用B的學(xué)生中隨機(jī)調(diào)查1人,發(fā)現(xiàn)他本月的支付金額大于2000元,依據(jù)小概率事件它在一次試驗(yàn)中是幾乎不可能發(fā)生的,所以可以認(rèn)為僅使用B的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論