版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆吉林省長春市德惠市九校高一下數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.2.某種產(chǎn)品的廣告費用支出與銷售額之間具有線性相關(guān)關(guān)系,根據(jù)下表數(shù)據(jù)(單位:百萬元),由最小二乘法求得回歸直線方程為.現(xiàn)發(fā)現(xiàn)表中有個數(shù)據(jù)看不清,請你推斷該數(shù)據(jù)值為()345582834★5672A.65 B.60 C.55 D.503.設(shè),則的取值范圍是()A. B. C. D.4.過△ABC的重心任作一直線分別交邊AB,AC于點D、E.若,,,則的最小值為()A.4 B.3 C.2 D.15.已知集,集合,則A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)6.從總數(shù)為的一批零件中抽取一個容量為的樣本,若每個零件被抽取的可能性為,則為()A. B. C. D.7.一個人連續(xù)射擊三次,則事件“至少擊中兩次”的對立事件是()A.恰有一次擊中 B.三次都沒擊中C.三次都擊中 D.至多擊中一次8.已知是圓上的三點,()A. B. C. D.9.已知且,則為()A. B. C. D.10.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若cosB=,=2,且S△ABC=,則b的值為()A.4 B.3 C.2 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知、、分別是的邊、、的中點,為的外心,且,給出下列等式:①;②;③;④其中正確的等式是_________(填寫所有正確等式的編號).12.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.13.已知常數(shù)θ∈(0,π2),若函數(shù)f(x)在Rf(x)=2sinπx-1≤x≤1log是________.14.用列舉法表示集合__________.15.在等差數(shù)列中,已知,,則________.16.已知,則的最大值是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)一元二次不等式的解集為.(Ⅰ)當(dāng)時,求;(Ⅱ)當(dāng)時,求的取值范圍.18.據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計算出圖案中球與圓柱的體積比;(2)假設(shè)球半徑.試計算出圖案中圓錐的體積和表面積.19.如圖,在四棱柱中,底面ABCD為菱形,平面ABCD,AC與BD交于點O,,,.(1)證明:平面平面;(2)求二面角的大小.20.已知數(shù)列{bn}的前n項和,n∈N*.(1)求數(shù)列{bn}的通項公式;(2)記,求數(shù)列{cn}的前n項和Sn;(3)在(2)的條件下,記,若對任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.21.已知函數(shù)的最小正周期為.(1)求的值和函數(shù)的值域;(2)求函數(shù)的單調(diào)遞增區(qū)間及其圖像的對稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當(dāng)與面垂直時體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關(guān)鍵.2、B【解析】
求出樣本中心點的坐標(biāo),代入線性回歸方程求解.【詳解】設(shè)表中看不清的數(shù)據(jù)為,則,,代入,得,解得.故選:.【點睛】本題考查線性回歸方程,明確線性回歸方程恒過樣本點的中心是關(guān)鍵,是基礎(chǔ)題.3、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.4、B【解析】
利用重心以及向量的三點共線的結(jié)論得到的關(guān)系式,再利用基本不等式求最小值.【詳解】設(shè)重心為,因為重心分中線的比為,則有,,則,又因為三點共線,所以,則,取等號時.故選B.【點睛】(1)三角形的重心是三條中線的交點,且重心分中線的比例為;(2)運(yùn)用基本不等式時,注意取等號時條件是否成立.5、D【解析】
根據(jù)函數(shù)的單調(diào)性解不等式,再解絕對值不等式,最后根據(jù)交集的定義求解.【詳解】由得,由得,所以,故選D.【點睛】本題考查指數(shù)不等式和絕對值不等式的解法,集合的交集.指數(shù)不等式要根據(jù)指數(shù)函數(shù)的單調(diào)性求解.6、A【解析】
由樣本容量、總?cè)萘恳约皞€體入樣可能性三者之間的關(guān)系,列等式求出的值.【詳解】由題意可得,解得,故選A.【點睛】本題考查抽樣概念的理解,了解樣本容量、總體容量以及個體入樣可能性三者之間的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.7、D【解析】
根據(jù)判斷的原則:“至少有個”的對立是“至多有個”.【詳解】根據(jù)判斷的原則:“至少擊中兩次”的對立事件是“至多擊中一次”,故選D.【點睛】至多至少的對立事件問題,可以采用集合的補(bǔ)集思想進(jìn)行轉(zhuǎn)化.如“至少有個”則對應(yīng)“”,其補(bǔ)集應(yīng)為“”.8、C【解析】
先由等式,得出,并計算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計算出的值.【詳解】由于是圓上的三點,,則,,故選C.【點睛】本題考查平面向量的數(shù)量積的計算,解題的關(guān)鍵就是要確定向量的模和夾角,考查計算能力,屬于中等題.9、B【解析】由題意得,因為,即,所以,又,又,且,所以,故選B.10、C【解析】試題分析:根據(jù)正弦定理可得,.在中,,.,,.,.故C正確.考點:1正弦定理;2余弦定理.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④.【解析】
根據(jù)向量的中點性質(zhì)與向量的加法運(yùn)算,可判斷①②③.【詳解】、、分別是的邊、、的中點,為的外心,且,設(shè)三條中線交點為G,如下圖所示:對于①,由三角形中線性質(zhì)及向量加法運(yùn)算可知,所以①正確;對于②,,所以②正確;對于③,,所以③錯誤;對于,由外心性質(zhì)可知,所以故正確.綜上可知,正確的為①②④.故答案為:①②④.【點睛】本題考查了向量的線性運(yùn)算,三角形外心的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.12、.【解析】
先利用等比中項的性質(zhì)計算出的值,然后由可求出的值.【詳解】由等比中項的性質(zhì)可得,得,所以,,,故答案為.【點睛】本題考查等比數(shù)列公比的計算,充分利用等比中項和等比數(shù)列相關(guān)性質(zhì)的應(yīng)用,可簡化計算,屬于中等題.13、15【解析】
根據(jù)f(-1【詳解】∵函數(shù)f(x)在R上恒有f(-1∴f-∴函數(shù)周期為4.∵常數(shù)θ∈(0,π∴cos∴函數(shù)y=f(x)-cosθ-1在區(qū)間[-5,14]上零點,即函數(shù)y=f(x)?(x∈[-5,14])與直線由f(x)=2sinπx由圖可知,在一個周期內(nèi),函數(shù)y=f(x)-cos故函數(shù)y=f(x)-cosθ-1在區(qū)間故填15.【點睛】本題主要考查了函數(shù)零點的個數(shù)判斷,涉及數(shù)形結(jié)合思想在解題中的運(yùn)用,屬于難題.14、【解析】
先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因為,所以,又因為,所以,此時或,則可得集合:.【點睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.15、-16【解析】
設(shè)等差數(shù)列的公差為,利用通項公式求出即可.【詳解】設(shè)等差數(shù)列的公差為,得,則.故答案為【點睛】本題考查了等差數(shù)列通項公式的應(yīng)用,屬于基礎(chǔ)題.16、4【解析】
利用對數(shù)的運(yùn)算法則以及二次函數(shù)的最值化簡求解即可.【詳解】,,,則.當(dāng)且僅當(dāng)時,函數(shù)取得最大值.【點睛】本題主要考查了對數(shù)的運(yùn)算法則應(yīng)用以及利用二次函數(shù)的配方法求最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)將代入得到關(guān)于的不等式,結(jié)合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集為即不等式恒成立,求解時結(jié)合與之對應(yīng)的二次函數(shù)考慮可得到需滿足的條件解不等式求的取值范圍.【詳解】(Ⅰ)當(dāng)時,原不等式為:解方程得.(Ⅱ)由,即不等式的解集為R,則.18、(1);(2)圓錐體積,表面積【解析】
(1)由球的半徑可知圓柱底面半徑和高,代入球和圓柱的體積公式求得體積,作比得到結(jié)果;(2)由球的半徑可得圓錐底面半徑和高,從而可求解出圓錐母線長,代入圓錐體積和表面積公式可求得結(jié)果.【詳解】(1)設(shè)球的半徑為,則圓柱底面半徑為,高為球的體積;圓柱的體積球與圓柱的體積比為:(2)由題意可知:圓錐底面半徑為,高為圓錐的母線長:圓錐體積:圓錐表面積:【點睛】本題考查空間幾何體的表面積和體積求解問題,考查學(xué)生對于體積和表面積公式的掌握,屬于基礎(chǔ)題.19、(1)證明見解析;(2)﹒【解析】
(1)證面面垂直只需證一個平面內(nèi)有一條直線和另一個平面垂直(2)通過作圖需找二面角的平面角即可【詳解】(1)證明:由平面ABCD,有;由四邊形ABCD為菱形,所以AC⊥BD:又因為,所以平面,因為平面,所以平面平面,(2)過O作于E,連結(jié)BE,由(1)知平面,所以,又因為,,所以平面BDE,從而;由,,所以∠OEB為二面角的平面角.由為等邊三角形且O為BD中點,有,,,由,有,由,有,從而.在中,,所以,即.綜上,二面角的大小為﹒【點睛】面面垂直可通過線面垂直進(jìn)行證明,二面角的平面角有正有負(fù),解題時要注意結(jié)合題設(shè)關(guān)系進(jìn)行正確判斷20、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】
(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.(3)由(2)求得的表達(dá)式,記不等式左邊為,利用差比較法判斷出的單調(diào)性,進(jìn)而求得的最小值,由此列不等式求得的取值范圍,進(jìn)而求得整數(shù)的最大值.【詳解】(1)∵數(shù)列{bn}的前n項和,n∈N*.∴①當(dāng)n=1時,b1=T1=1;②當(dāng)n≥2時,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;設(shè)f(n);則f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值為f(1);∵對任意正整數(shù)n,不等式恒成立,∴恒成立,即m<12;故整數(shù)m的最大值為1.【點睛】本小題主要考查已知求,考查裂項求和法,考查數(shù)列單調(diào)性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通訊設(shè)施架子管租賃合同
- 藥品檢測員招聘合同范本
- 品牌建設(shè)項目簽證管理辦法
- 社區(qū)籃球場改造協(xié)議
- 資本市場導(dǎo)航企業(yè)融資新路徑
- 餐飲行業(yè)高峰期電力增容租賃合同
- 2025年廣告代理書面合同格式范文
- 橋梁建設(shè)鐵藝施工合同范文
- 2025林地承包經(jīng)營合同書
- 2025停車場地租用合同協(xié)議書
- 康復(fù)評定學(xué)試題和答案
- 大學(xué)生寒假安全教育主題班會
- 杏醬生產(chǎn)工藝
- 社會團(tuán)體主要負(fù)責(zé)人登記表
- 難免壓力性損傷申報表
- 四線三格word模板
- 國家各部委專項資金申報種類
- 年會抽獎券可編輯模板
- 中醫(yī)醫(yī)案學(xué)三醫(yī)案的類型讀案方法
- 制造業(yè)信息化管理系統(tǒng)架構(gòu)規(guī)劃
- 化學(xué)錨栓計算
評論
0/150
提交評論