2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第1頁
2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第2頁
2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第3頁
2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第4頁
2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年河北唐山市區(qū)縣聯(lián)考數(shù)學(xué)高一下期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列各命題中,假命題的是()A.“度”與“弧度”是度量角的兩種不同的度量單位B.一度的角是周角的,一弧度的角是周角的C.根據(jù)弧度的定義,一定等于弧度D.不論是用角度制還是用弧度制度量角,它們都與圓的半徑長短有關(guān)2.已知點在第四象限,則角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)獎金投入,若該公司年全年投入研發(fā)獎金萬元,在此基礎(chǔ)上,每年投入的研發(fā)獎金比上一年增長,則該公司全年投入的研發(fā)獎金開始超過萬元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年4.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.5.已知數(shù)列和數(shù)列都是無窮數(shù)列,若區(qū)間滿足下列條件:①;②;則稱數(shù)列和數(shù)列可構(gòu)成“區(qū)間套”,則下列可以構(gòu)成“區(qū)間套”的數(shù)列是()A., B.,C., D.,6.為了得到函數(shù)y=sin(x+A.向左平行移動π3B.向右平行移動π3C.向上平行移動π3D.向下平行移動π37.已知函數(shù)的圖像如圖所示,關(guān)于有以下5個結(jié)論:(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應(yīng)的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結(jié)論的編號是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)8.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.9.下列命題中正確的是()A.相等的角終邊必相同 B.終邊相同的角必相等C.終邊落在第一象限的角必是銳角 D.不相等的角其終邊必不相同10.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對稱;③在區(qū)間上單調(diào)遞增;④若實數(shù)m使得方程在上恰好有三個實數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,則數(shù)列的前6項和為_______.12.已知是邊長為4的等邊三角形,為平面內(nèi)一點,則的最小值為__________.13.在中,內(nèi)角,,所對的邊分別為,,,,且,則面積的最大值為______.14.過點作直線與圓相交,則在弦長為整數(shù)的所有直線中,等可能的任取一條直線,則弦長長度不超過14的概率為______________.15.若則____________16.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,且(1)當(dāng)時,求及的值;(2)若函數(shù)的最小值是,求實數(shù)的值.18.在中,已知角的對邊分別為,且.(1)求角的大??;(2)若,,求的面積.19.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC20.直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.21.如圖,在三棱錐中,分別為棱上的中點.(1)求證:平面;(2)若平面,求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)弧度制的概念,逐項判斷,即可得出結(jié)果.【詳解】A選項,“度”與“弧度”是度量角的兩種不同的度量單位,正確;B選項,一度的角是周角的,一弧度的角是周角的,正確;C選項,根據(jù)弧度的定義,一定等于弧度,正確;D選項,用角度制度量角,與圓的半徑長短無關(guān),故D錯.故選:D.【點睛】本題主要考查弧度制的相關(guān)判定,熟記概念即可,屬于基礎(chǔ)題型.2、B【解析】

根據(jù)第四象限內(nèi)點的坐標特征,再根據(jù)正弦值、正切值的正負性直接求解即可.【詳解】因為點在第四象限,所以有:是第二象限內(nèi)的角.故選:B【點睛】本題考查了正弦值、正切值的正負性的判斷,屬于基礎(chǔ)題.3、B【解析】試題分析:設(shè)從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點】增長率問題,常用對數(shù)的應(yīng)用【名師點睛】本題考查等比數(shù)列的實際應(yīng)用.在實際問題中平均增長率問題可以看作等比數(shù)列的應(yīng)用,解題時要注意把哪個數(shù)作為數(shù)列的首項,然后根據(jù)等比數(shù)列的通項公式寫出通項,列出不等式或方程就可求解.4、B【解析】

過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應(yīng)用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.5、C【解析】

直接利用已知條件,判斷選項是否滿足兩個條件即可.【詳解】由題意,對于A:,,∵,∴不成立,所以A不正確;對于B:由,,得不成立,所以B不正確;對于C:,∵,∴成立,并且也成立,所以C正確;對于D:由,,得,∴不成立,所以D不正確;故選:C.【點睛】本題考查新定義的理解和運用,考查數(shù)列的極限的求法,考查分析問題解決問題的能力及運算能力,屬于中檔題.6、A【解析】試題分析:為得到函數(shù)y=sin(x+π3)【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,函數(shù)y=f(x)的圖象向右平移a個單位長度得y=f(x-a)的圖象,而函數(shù)y=f(x)的圖象向上平移a個單位長度得y=f(x)+a的圖象.左、右平移涉及的是x的變化,上、下平移涉及的是函數(shù)值f(x)的變化.7、B【解析】

由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點向右平移個單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.【詳解】由圖可知:,所以,,所以,即因為,所以,所以,故(1)(2)正確將圖像上所有的點向右平移個單位得到的函數(shù)為此函數(shù)是奇函數(shù),故(3)錯誤因為所以關(guān)于直線對稱,即有故(4)正確因為所以關(guān)于點對稱,即有故(5)正確綜上可知:正確的有(1)(2)(4)(5)故選:B【點睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),屬于中檔題.8、D【解析】

由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.9、A【解析】

根據(jù)終邊相同的角的的概念可得正確的選項.【詳解】終邊相同的角滿足,故B、D錯誤,終邊落在第一象限的角可能是負角,故C錯誤,相等的角的終邊必定相同,故A正確.故選:A.【點睛】本題考查終邊相同的角,注意終邊相同時,有,本題屬于基礎(chǔ)題.10、C【解析】

,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【詳解】因為,故①正確因為,故②不正確由得所以在區(qū)間上單調(diào)遞增,故③正確若實數(shù)m使得方程在上恰好有三個實數(shù)解,結(jié)合的圖象知,必有此時,另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【點睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時首先應(yīng)把函數(shù)化成三角函數(shù)基本型.二、填空題:本大題共6小題,每小題5分,共30分。11、84【解析】

根據(jù)分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式求解.【詳解】因為,所以.【點睛】本題考查分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式,考查基本分析求解能力,屬基礎(chǔ)題.12、-1.【解析】分析:可建立坐標系,用平面向量的坐標運算解題.詳解:建立如圖所示的平面直角坐標系,則,設(shè),∴,易知當(dāng)時,取得最小值.故答案為-1.點睛:求最值問題,一般要建立一個函數(shù)關(guān)系式,化幾何最值問題為函數(shù)的最值,本題通過建立平面直角坐標系,把向量的數(shù)量積用點的坐標表示出來后,再用配方法得出最小值,根據(jù)表達式的幾何意義也能求得最大值.13、【解析】

根據(jù)正弦定理將轉(zhuǎn)化為,即,由余弦定理得,再用基本不等式法求得,根據(jù)面積公式求解.【詳解】根據(jù)正弦定理可轉(zhuǎn)化為,化簡得由余弦定理得因為所以,當(dāng)且僅當(dāng)時取所以則面積的最大值為.故答案為:【點睛】本題主要考查正弦定理,余弦定理,基本不等式的綜合應(yīng)用,還考查了運算求解的能力,屬于中檔題.14、【解析】

根據(jù)圓的性質(zhì)可求得最長弦和最短弦的長度,從而得到所有弦長為整數(shù)的直線條數(shù),從中找到長度不超過的直線條數(shù),根據(jù)古典概型求得結(jié)果.【詳解】由題意可知,最長弦為圓的直徑:在圓內(nèi)部且圓心到的距離為最短弦長為:弦長為整數(shù)的直線的條數(shù)有:條其中長度不超過的條數(shù)有:條所求概率:本題正確結(jié)果:【點睛】本題考查古典概型概率問題的求解,涉及到過圓內(nèi)一點的最長弦和最短弦的長度的求解;易錯點是忽略圓的對稱性,造成在求解弦長為整數(shù)的直線的條數(shù)時出現(xiàn)丟根的情況.15、【解析】因為,所以=.故填.16、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2).【解析】

(1)以向量為載體求解向量數(shù)量積、模長,我們只需要把向量坐標表示出來,最后用公式就能輕松完成;(2)由(1)可以把表達式求出,最終化成二次復(fù)合型函數(shù)模式,考慮軸與區(qū)間的位置關(guān)系,我們就能對函數(shù)進行進一步的研究.【詳解】(1)因為,所以又因為,所以(2),當(dāng)時,.當(dāng)時,不滿足.當(dāng)時,,,不滿足.綜上,實數(shù)的值為.【點睛】在研究三角函數(shù)相關(guān)的性質(zhì)(值域、對稱中心、對稱軸、單調(diào)性……)我們都是將其化為(或者余弦、正切相對應(yīng))的形式,利用整體思想,我們能比較方便的去研究他們相關(guān)性質(zhì).第二問中我們其實就是求最小值問題,當(dāng)然摻雜了二次函數(shù)的“軸變區(qū)間定”的考點.,綜合性較強.18、(1);(2).【解析】

(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大??;(2)由余弦定理可計算出,再利用三角形的面積公式可得出的面積.【詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【點睛】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊為,避免利用方程思想求出邊的值,考查計算能力,屬于中等題.19、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當(dāng),即時,f(θ)取得最大值.考點:1.余弦定理;1.正弦定理20、或【解析】

直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論