臺州市重點中學2024屆中考數(shù)學模擬試題含解析_第1頁
臺州市重點中學2024屆中考數(shù)學模擬試題含解析_第2頁
臺州市重點中學2024屆中考數(shù)學模擬試題含解析_第3頁
臺州市重點中學2024屆中考數(shù)學模擬試題含解析_第4頁
臺州市重點中學2024屆中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

臺州市重點中學2024屆中考數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.102.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體3.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.4.如圖所示的圖形為四位同學畫的數(shù)軸,其中正確的是()A. B.C. D.5.如圖,△ABC的內切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),且AD=2,BC=5,則△ABC的周長為()A.16 B.14 C.12 D.106.的絕對值是()A. B. C. D.7.下列幾何體中三視圖完全相同的是()A. B. C. D.8.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8339.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x10.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側面展開圖的圓心角是()A.90°B.120°C.150°D.180°二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:mx2﹣4m=_____.12.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.13.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.14.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.15.已知a+=2,求a2+=_____.16.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.17.若關于x的方程x2-mx+m=0有兩個相等實數(shù)根,則代數(shù)式2m2-8m+3的值為__________.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.19.(5分)如圖,?ABCD的邊CD為斜邊向內作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點E在平行四邊形內部,連接AE、BE,求∠AEB的度數(shù).20.(8分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結合“一帶一路”展示了絲綢之路上古今文化經貿繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。21.(10分)計算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.22.(10分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.23.(12分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.24.(14分)解下列不等式組:

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.2、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.3、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.4、D【解析】

根據(jù)數(shù)軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統(tǒng)一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數(shù)軸三要素,故正確;故選D.【點睛】本題考查數(shù)軸的畫法,熟記數(shù)軸三要素是解題的關鍵.5、B【解析】

根據(jù)切線長定理進行求解即可.【詳解】∵△ABC的內切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【點睛】本題考查了三角形的內切圓以及切線長定理,熟練掌握切線長定理是解題的關鍵.6、C【解析】

根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析

容易題,失分原因:未掌握絕對值的概念.7、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.8、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.9、A【解析】

依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關法則是解題的關鍵.10、D【解析】試題分析:設正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設正圓錐的側面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.二、填空題(共7小題,每小題3分,滿分21分)11、m(x+2)(x﹣2)【解析】

提取公因式法和公式法相結合因式分解即可.【詳解】原式故答案為【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關鍵.分解一定要徹底.12、1.【解析】

由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.13、2【解析】

如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=214、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數(shù),其中兩枚硬幣全部正面向上的結果數(shù)為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.15、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點:完全平方公式.16、(0,0)或(0,﹣8)或(﹣6,0)【解析】

由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).17、1.【解析】

根據(jù)方程的系數(shù)結合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結論.【詳解】∵關于x的方程x2﹣mx+m=0有兩個相等實數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.三、解答題(共7小題,滿分69分)18、證明見解析【解析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.19、135°【解析】

先證明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,設∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四邊形的對角相等得出方程,求出x+y=135°,即可得出結果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,設∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【點睛】本題考查了平行四邊形的性質,解題的關鍵是熟練的掌握平行四邊形的性質.20、(1);(2).【解析】

(1)直接利用概率公式計算;(2)畫樹狀圖展示所有36種等可能的結果數(shù),再找出兩人取出的筷子顏色相同的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)小麗隨機取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結果數(shù),其中兩人取出的筷子顏色相同的結果數(shù)為12,所以小麗隨爸爸去看新春燈會的概率==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式計算事件A或事件B的概率.21、1.【解析】

直接利用絕對值的性質以及特殊角的三角函數(shù)值分別化簡得出答案.【詳解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【點睛】本題考查了絕對值的性質以及特殊角的三角函數(shù)值,解題的關鍵是熟練的掌握絕對值的性質以及特殊角的三角函數(shù)值.22、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】

(1)應用待定系數(shù)法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據(jù)以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論