2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河北省阜城中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈A.1盞 B.3盞C.5盞 D.9盞2.已知中,,,為邊上的中點,則()A.0 B.25 C.50 D.1003.若平面∥平面,直線∥平面,則直線與平面的關系為()A.∥ B. C.∥或 D.4.已知、是不重合的平面,a、b、c是兩兩互不重合的直線,則下列命題:①;②;③.其中正確命題的個數(shù)是()A.3 B.2 C.1 D.05.設x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]6.觀察下列幾何體各自的三視圖,其中有且僅有兩個視圖完全相同的是()①正方體②圓錐③正三棱柱④正四棱錐A.①② B.②④ C.①③ D.①④7.關于x的不等式ax-b>0的解集是,則關于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)8.若是第四象限角,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.若a,b,c∈R,且滿足a>b>c,則下列不等式成立的是()A.1a<C.ac210.已知直線:,:,若:;,則是的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.設a>0,角α的終邊經(jīng)過點P(﹣3a,4a),那么sinα+2cosα的值等于.12.方程,的解集是__________.13.如圖,在正方體中,有以下結論:①平面;②平面;③;④異面直線與所成的角為.則其中正確結論的序號是____(寫出所有正確結論的序號).14.不等式的解集為________15.經(jīng)過點,且在兩坐標軸上的截距之和為2的直線的一般式方程為________.16.已知數(shù)列的前項和為,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為等差數(shù)列,前項和為,是首項為的等比數(shù)列,且公比大于,,,.(1)求和的通項公式;(2)求數(shù)列的前項和.18.某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).19.已知是同一平面內的三個向量,其中為單位向量.(Ⅰ)若//,求的坐標;(Ⅱ)若與垂直,求與的夾角.20.已知函數(shù)(1)求函數(shù)的最小正周期;(2)若,且,求的值.21.設是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

設塔頂?shù)腶1盞燈,由題意{an}是公比為2的等比數(shù)列,∴S7==181,解得a1=1.故選B.2、C【解析】

三角形為直角三角形,CM為斜邊上的中線,故可知其長度,由向量運算法則,對式子進行因式分解,由平行四邊形法則,求出向量,由長度計算向量積.【詳解】由勾股定理逆定理可知三角形為直角三角形,CM為斜邊上的中線,所以,原式=.故選C.【點睛】本題考查向量的線性運算及數(shù)量積,數(shù)量積問題一般要將兩個向量轉化為已知邊長和夾角的兩向量,但本題經(jīng)化簡能得到共線的兩向量所以直接根據(jù)模的大小計算即可.3、C【解析】

利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關系.【詳解】設平面為長方體的上底面,平面為長方體的下底面,因為直線∥平面,所以直線通過平移后,可能與平面平行,也可能平移到平面內,所以∥或.【點睛】空間中點、線、面位置關系問題,??梢越柚L方體進行研究,考查直觀想象能力.4、C【解析】

由面面垂直的判定定理,可得①正確;利用列舉所有可能,即可判斷②③錯誤.【詳解】①由面面垂直的判定定理,∵,a?β,∴α⊥β,故正確;

②,則平行,相交,異面都有可能,故不正確;

③,則與α平行,相交都有可能,故不正確.

故選:C.【點睛】本題主要考查線面關系的判斷,考查的空間想象能力,屬于基礎題.判斷線面關系問題首先要熟練掌握有關定理、推論,其次可以利用特殊位置排除錯誤結論.5、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標函數(shù)即,易知直線在軸上的截距最大時,目標函數(shù)取得最小值;在軸上的截距最小時,目標函數(shù)取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質是把代數(shù)問題幾何化,即運用數(shù)形結合的思想解題.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點處或邊界上取得.6、B【解析】

正方體的三個視圖都相同,①不符合;圓錐的正視圖和側視圖相同都是三角形,俯視圖為圓,②符合;正三棱柱的俯視圖是等邊三角形,正視圖和側視圖都是長方形,但是長不同寬相同,③不符合;正四棱錐的俯視圖是正方形,正視圖和側視圖都是相同的等腰三角形,④符合,故選B.7、A【解析】試題分析:因為關于x的不等式ax-b>0的解集是,所以,從而SKIPIF1<0≤0可化為SKIPIF1<0,解得,關于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),選A??键c:本題主要考查一元一次不等式、一元二次不等式的解法。點評:簡單題,從已知出發(fā),首先確定a,b的關系,并進一步確定一元二次不等式的解集。8、C【解析】

利用象限角的表示即可求解.【詳解】由是第四象限角,則,所以,所以是第三象限角.故選:C【點睛】本題考查了象限角的表示,屬于基礎題.9、C【解析】

通過反例可依次排除A,B,D選項;根據(jù)不等式的性質可判斷出C正確.【詳解】A選項:若a=1,b=-2,則1a>1B選項:若a=1,b=12,則1aC選項:c2+1>0又a>b∴ac2D選項:當c=0時,ac=bc本題正確選項:C【點睛】本題考查不等式性質的應用,解決此類問題通常采用排除法,利用反例來排除錯誤選項即可,屬于基礎題.10、C【解析】因為直線:,:,所以或,即是的必要不充分條件.故選C.點睛:本題考查兩條直線平行的判定;由直線的一般式判定兩直線平行或垂直時,若將一般式化成斜截式,往往需要討論斜率是否存在,為了避免討論,記住以下結論:已知直線,.則或;.二、填空題:本大題共6小題,每小題5分,共30分。11、﹣【解析】試題分析:利用任意角三角函數(shù)定義求解.解:∵a>0,角α的終邊經(jīng)過點P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案為﹣.考點:任意角的三角函數(shù)的定義.12、【解析】

用正弦的二倍角公式展開,得到,分兩種情況討論得出結果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、①③【解析】

①:利用線面平行的判定定理可以直接判斷是正確的結論;②:舉反例可以判斷出該結論是錯誤的;③:可以利用線面垂直的判定定理,得到線面垂直,再利用線面垂直的性質定理可以判斷是正確的結論;④:可以通過,可以判斷出異面直線與所成的角為,即本結論是錯誤的,最后選出正確的結論序號.【詳解】①:平面,平面平面,故本結論是正確的;②:在正方形中,,顯然不垂直,而,所以不互相垂直,要是平面,則必有互相垂直,顯然是不可能的,故本結論是錯誤的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本結論是正確的;④:因為,所以異面直線與所成的角為,在正方形中,,故本結論是錯誤的,因此正確結論的序號是①③.【點睛】本題考查了線面平行的判定定理、線面垂直的判定定理、性質定理,考查了異面直線所成的角、線面垂直的性質.14、【解析】因為所以,即不等式的解集為.15、【解析】

由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式16、【解析】分析:由,當時,當時,相減可得,則,由此可以求出數(shù)列的通項公式詳解:當時,當時由可得二式相減可得:又則數(shù)列是公比為的等比數(shù)列點睛:本題主要考查了等比數(shù)列的通項公式即數(shù)列遞推式,在解答此類問題時看到,則用即可算出,需要注意討論的情況。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,;(2),.【解析】

(1)由等差數(shù)列和等比數(shù)列的基本量法求數(shù)列的通項公式;(2)用錯位相減法求和.【詳解】(1)數(shù)列公比為,則,∵,∴,∴,的公差為,首項是,則,,∴,解得.∴.(2),數(shù)列的前項和記為,,①,②①-②得:,∴.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式,考查等差數(shù)列的前n項和及錯位相減法求和.在求等差數(shù)列和等比數(shù)列的通項公式及前n項和公式時,基本量法是最基本也是最重要的方法,務必掌握,數(shù)列求和時除公式法外,有些特殊方法也需掌握:錯位相減法,裂項相消法,分組(并項)求和法等等.18、(1)(2)平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80【解析】

(1)利用頻率分布直方圖的性質,列出方程,即可求解;(2)由頻率分布直方圖,結合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,即可求解.【詳解】(1)由頻率分布直方圖的性質,可得,解得.(2)由頻率分布直方圖,結合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,可得平均數(shù)為:中位數(shù)為x,則,解得.根據(jù)眾數(shù)的概念,可得此頻率分布直方圖的眾數(shù)為:80,因此估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80.【點睛】本題主要考查了頻率分布直方圖的性質,平均數(shù)、中位數(shù)和眾數(shù)的求解,其中解答中熟記頻率分布直方圖的相關知識是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(Ⅰ)或(Ⅱ)【解析】

(Ⅰ)設,根據(jù)向量的模和共線向量的條件,列出方程組,即可求解.(Ⅱ)由,根據(jù)向量的運算求得,再利用向量的夾角公式,即可求解.【詳解】(Ⅰ)設由題則有解得或,.(Ⅱ)由題即,.【點睛】本題主要考查了向量的坐標運算,共線向量的條件及向量的夾角公式的應用,其中解答中熟記向量的基本概念和運算公式,合理準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)最小正周期是(2)【解析】

(1)運用輔助角公式化簡得;(2)先計算的值為,構造,求出的值.【詳解】(1)因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論