版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河北省石家莊市辛集市辛集中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)是△所在平面內(nèi)的一點(diǎn),且,則△與△的面積之比是()A. B. C. D.2.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.3.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.4.2021年某省新高考將實(shí)行“”模式,即語(yǔ)文、數(shù)學(xué)、外語(yǔ)必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共有12種選課模式.某同學(xué)已選了物理,記事件:“他選擇政治和地理”,事件:“他選擇化學(xué)和地理”,則事件與事件()A.是互斥事件,不是對(duì)立事件 B.是對(duì)立事件,不是互斥事件C.既是互斥事件,也是對(duì)立事件 D.既不是互斥事件也不是對(duì)立事件5.如果成等差數(shù)列,成等比數(shù)列,那么等于()A. B. C. D.6.已知向量=(),=(-1,1),若,則的值為()A. B. C. D.7.在中,,,,則的面積是()A. B. C.或 D.或8.下列說(shuō)法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則9.已知向量,且,則m=()A.?8 B.?6C.6 D.810.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實(shí)數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在正方體中,點(diǎn)P是上底面(含邊界)內(nèi)一動(dòng)點(diǎn),則三棱錐的主視圖與俯視圖的面積之比的最小值為_(kāi)_____.12.已知,若數(shù)列滿足,,則等于________13.已知無(wú)窮等比數(shù)列的首項(xiàng)為,公比為,則其各項(xiàng)的和為_(kāi)_________.14.設(shè)為虛數(shù)單位,復(fù)數(shù)的模為_(kāi)_____.15.《萊茵德紙草書(shū)》是世界上最古老的數(shù)學(xué)著作之一.書(shū)中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每人所得份量成等差數(shù)列,且較大的三份之和的是較小的兩份之和,則最小一份的量為_(kāi)__.16.如圖,正方體中,的中點(diǎn)為,的中點(diǎn)為,為棱上一點(diǎn),則異面直線與所成角的大小為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知公差不為零的等差數(shù)列滿足:,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式.(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.18.在中,內(nèi)角,,的對(duì)邊分別為,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面積為,求的值.19.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值時(shí)的值.20.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.21.已知向量,.(1)若,在集合中取值,求滿足的概率;(2)若,在區(qū)間內(nèi)取值,求滿足的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】試題分析:依題意,得,設(shè)點(diǎn)到的距離為,所以與的面積之比是,故選B.考點(diǎn):三角形的面積.2、C【解析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點(diǎn)D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個(gè)棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.3、C【解析】
求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故選:C【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值.4、A【解析】
事件與事件不能同時(shí)發(fā)生,是互斥事件,他還可以選擇化學(xué)和政治,不是對(duì)立事件,得到答案.【詳解】事件與事件不能同時(shí)發(fā)生,是互斥事件他還可以選擇化學(xué)和政治,不是對(duì)立事件故答案選A【點(diǎn)睛】本題考查了互斥事件和對(duì)立事件,意在考查學(xué)生對(duì)于互斥事件和對(duì)立事件的理解.5、D【解析】
因?yàn)槌傻炔顢?shù)列,所以,因?yàn)槌傻缺葦?shù)列,所以,因此.故選D6、D【解析】
對(duì)條件兩邊平方,得到該兩個(gè)向量分別垂直,代入點(diǎn)的坐標(biāo),計(jì)算參數(shù),即可.【詳解】結(jié)合條件可知,,得到,代入坐標(biāo),得到,解得,故選D.【點(diǎn)睛】本道題考查了向量的運(yùn)算,考查了向量垂直坐標(biāo)表示,難度中等.7、C【解析】
先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進(jìn)行求解即可.【詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內(nèi)角,或,或在中,由,,或則面積或.故選C.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.8、D【解析】
利用不等式的性質(zhì)或舉反例的方法來(lái)判斷各選項(xiàng)中不等式的正誤.【詳解】對(duì)于A選項(xiàng),若且,則,該選項(xiàng)錯(cuò)誤;對(duì)于B選項(xiàng),取,,,,則,均滿足,但,B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),取,,則滿足,但,C選項(xiàng)錯(cuò)誤;對(duì)于D選項(xiàng),由不等式的性質(zhì)可知該選項(xiàng)正確,故選:D.【點(diǎn)睛】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來(lái)進(jìn)行驗(yàn)證,考查推理能力,屬于基礎(chǔ)題.9、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.10、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對(duì)稱軸為,∴可得,解得.故選:C.【點(diǎn)睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)正方體的棱長(zhǎng)為,求出三棱錐的主視圖面積為定值,當(dāng)與重合時(shí),三棱錐的俯視圖面積最大,此時(shí)主視圖與俯視圖面積比值最小.【詳解】設(shè)正方體的棱長(zhǎng)為,則三棱錐的主視圖是底面邊為,高為的三角形,其面積為,當(dāng)與重合時(shí),三棱錐的俯視圖為正方形,其面積最大,最大值為,所以,三棱錐的主視圖與俯視圖面積比的最小值為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的三視圖面積計(jì)算應(yīng)用問(wèn)題,屬于基礎(chǔ)題.12、【解析】
根據(jù)首項(xiàng)、遞推公式,結(jié)合函數(shù)的解析式,求出的值,可以發(fā)現(xiàn)數(shù)列是周期數(shù)列,求出周期,利用數(shù)列的周期性可以求出的值.【詳解】,所以數(shù)列是以5為周期的數(shù)列,因?yàn)?0能被5整除,所以.【點(diǎn)睛】本題考查了數(shù)列的周期性,考查了數(shù)學(xué)運(yùn)算能力.13、【解析】
根據(jù)無(wú)窮等比數(shù)列求和公式求出等比數(shù)列的各項(xiàng)和.【詳解】由題意可知,等比數(shù)列的各項(xiàng)和為,故答案為:.【點(diǎn)睛】本題考查等比數(shù)列各項(xiàng)和的求解,解題的關(guān)鍵就是利用無(wú)窮等比數(shù)列求和公式進(jìn)行計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.14、5【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),然后代入復(fù)數(shù)模的公式,即可求得答案.【詳解】由題意,復(fù)數(shù),則復(fù)數(shù)的模為.故答案為5【點(diǎn)睛】本題主要考查了復(fù)數(shù)的乘法運(yùn)算,以及復(fù)數(shù)模的計(jì)算,其中熟記復(fù)數(shù)的運(yùn)算法則,和復(fù)數(shù)模的公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
設(shè)此等差數(shù)列為{an},公差為d,則(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份為a1,故答案為.16、【解析】
根據(jù)題意得到直線MP運(yùn)動(dòng)起來(lái)構(gòu)成平面,可得到面,進(jìn)而得到結(jié)果.【詳解】取的中點(diǎn)O連接,,根據(jù)題意可得到直線MP是一條動(dòng)直線,當(dāng)點(diǎn)P變動(dòng)時(shí)直線就構(gòu)成了平面,因?yàn)镸O均為線段的中點(diǎn),故得到,四邊形為平行四邊形,面,故得到,又面,進(jìn)而得到.故夾角為.故答案為.【點(diǎn)睛】這個(gè)題目考查的是異面直線的夾角的求法;常見(jiàn)方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問(wèn)題;或者證明線面垂直進(jìn)而得到面面垂直,這種方法適用于異面直線垂直的時(shí)候.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,最小值是.【解析】
(1)利用等比中項(xiàng)的性質(zhì)列方程,將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,由此求得數(shù)列的通項(xiàng)公式.(2)首先求得數(shù)列的前項(xiàng)和,由列不等式,解一元二次不等式求得的取值范圍,由此求得的最小值.【詳解】(1)設(shè)等差數(shù)列的公差為(),由題意得化簡(jiǎn),得.因?yàn)?,所以,解得所以,即?shù)列的通項(xiàng)公式是().(2)由(1)可得.假設(shè)存在正整數(shù),使得,即,即,解得或(舍).所以所求的最小值是.【點(diǎn)睛】本小題主要考查等比中項(xiàng)的性質(zhì),考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和公式,考查一元二次不等式的解法,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,化簡(jiǎn)得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面積公式得,得到,再利用,即可求解.【詳解】(Ⅰ)由題意知,即,由正弦定理,得,①,由余弦定理,得,又因?yàn)?,所以.(Ⅱ)因?yàn)椋?,由面積公式得,即.由①得,故,即.【點(diǎn)睛】本題考查正弦和余弦定理的應(yīng)用,屬于基礎(chǔ)題.19、(1),最大值為.(2)時(shí),最小值0.時(shí),最大值.【解析】
(1)利用數(shù)量積公式、倍角公式和輔助角公式,化簡(jiǎn),再利用三角函數(shù)的有界性,即可得答案;(2)利用整體法求出,再利用三角函數(shù)線,即可得答案.【詳解】(1)∴,的最大值為.(2)由(1)得,∵,.,當(dāng)時(shí),即時(shí),取最小值0.當(dāng),即時(shí),取最大值.【點(diǎn)睛】本題考查向量數(shù)量積、二倍角公式、輔助角公式、三角函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意整體法的應(yīng)用.20、(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點(diǎn).【詳解】(Ⅰ)證明:因?yàn)槠矫?所以;因?yàn)榈酌媸橇庑?,所?因?yàn)?平面,所以平面.(Ⅱ)證明:因?yàn)榈酌媸橇庑吻遥詾檎切?,所?因?yàn)?所以;因?yàn)槠矫?,平?所以;因?yàn)樗云矫?,平?所以平面平面.(Ⅲ)存在點(diǎn)為中點(diǎn)時(shí),滿足平面;理由如下:分別取的中點(diǎn),連接,在三角形中,且;在菱形中,為中點(diǎn),所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.21、(1)(2)【解析】
(1)首先求出包含的基
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股份代持與代管合同協(xié)議2篇
- 二零二五年度水利工程監(jiān)測(cè)與施工測(cè)量服務(wù)合同范本3篇
- 二零二五版新能源設(shè)備搬運(yùn)安裝合同細(xì)則3篇
- 2025年度航空航天器發(fā)動(dòng)機(jī)安裝與測(cè)試合同3篇
- 二零二五年度綠色交通設(shè)施招標(biāo)投標(biāo)合同6篇
- 展會(huì)參展資格合同(2篇)
- 二零二五版水利工程鋼筋加工與分包合同規(guī)范范本3篇
- 二零二五版室內(nèi)外景觀裝飾一體化合同3篇
- 2025年度文化演出活動(dòng)承辦合同3篇
- 二零二五版單位職工食堂員工健康體檢承包合同2篇
- 中建集團(tuán)面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識(shí)障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級(jí)語(yǔ)文下冊(cè)(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會(huì)盛典
- 215kWh工商業(yè)液冷儲(chǔ)能電池一體柜用戶手冊(cè)
- 場(chǎng)地平整施工組織設(shè)計(jì)-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動(dòng)食材配送方案
評(píng)論
0/150
提交評(píng)論