湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

VIP免費(fèi)下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省宜昌市高中教學(xué)協(xié)作體2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列結(jié)論正確的是().A.若ac<bc,則a<b B.若a2<C.若a>b,c<0,則ac<bc D.若a<b2.等差數(shù)列的前項(xiàng)和為.若,則()A. B. C. D.3.已知函數(shù),若,,則()A. B.2 C. D.4.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形5.中,,,,則()A.1 B. C. D.46.設(shè)a,b,c均為不等于1的正實(shí)數(shù),則下列等式中恒成立的是A.B.C.D.7.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.8.用數(shù)學(xué)歸納法證明的過程中,設(shè),從遞推到時,不等式左邊為()A. B.C. D.9.已知的三個頂點(diǎn)都在一個球面上,,且該球的球心到平面的距離為2,則該球的表面積為()A. B. C. D.10.若,,則的最小值為()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列滿足,則____________.12.已知,,若,則實(shí)數(shù)________.13.有五條線段,長度分別為2,3,5,7,9,從這五條線段中任取三條,則所取三條線段能構(gòu)成一個三角形的概率為___________.14.不等式的解為_______.15.已知實(shí)數(shù)滿足條件,則的最大值是________.16.若直線的傾斜角為,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.定義:對于任意,滿足條件且(是與無關(guān)的常數(shù))的無窮數(shù)列稱為數(shù)列.(1)若,證明:數(shù)列是數(shù)列;(2)設(shè)數(shù)列的通項(xiàng)為,且數(shù)列是數(shù)列,求常數(shù)的取值范圍;(3)設(shè)數(shù)列,若數(shù)列是數(shù)列,求的取值范圍.18.設(shè)函數(shù),其中向量,.(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;(2)在中,、、分別是角、、的對邊,已知,,的面積為,求外接圓半徑.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.21.已知數(shù)列中,,點(diǎn)在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng);(3)設(shè)、分別為數(shù)列、的前項(xiàng)和是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】分析:根據(jù)不等式性質(zhì)逐一分析即可.詳解:A.若ac<bc,則a<b,因?yàn)椴恢纁的符號,故錯誤;B.若a2<可令a=-1,b=-2,則結(jié)論錯誤;D.若a<b,則點(diǎn)睛:考查不等式的基本性質(zhì),做此類題型最好的方法就是舉例子注意排除即可.屬于基礎(chǔ)題.2、D【解析】

根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,,成等差數(shù)列,即:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列片段和性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)片段和成等差數(shù)列得到項(xiàng)之間的關(guān)系,屬于基礎(chǔ)題.3、C【解析】

由函數(shù)的解析式,求得,,進(jìn)而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因?yàn)?,,即,,所以,,即,,平方可得,,兩式相加可得,所?故選:C.【點(diǎn)睛】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進(jìn)行運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.4、D【解析】

先由可得,然后利用與三角函數(shù)的和差公式可推出,從而得到是直角三角形【詳解】因?yàn)?,所以所以因?yàn)樗约此运砸驗(yàn)?,所以因?yàn)?,所以,即是直角三角形故選:D【點(diǎn)睛】要判斷三角形的形狀,應(yīng)圍繞三角形的邊角關(guān)系進(jìn)行思考,主要有以下兩條途徑:①角化邊:把已知條件轉(zhuǎn)化為只含邊的關(guān)系,通過因式分解、配方等得到邊的對應(yīng)關(guān)系,從而判斷三角形形狀,②邊化角:把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角恒等變換,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀.5、C【解析】

利用三角形內(nèi)角和為可求得;利用正弦定理可求得結(jié)果.【詳解】由正弦定理得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦定理解三角形,屬于基礎(chǔ)題.6、B【解析】

根據(jù)對數(shù)運(yùn)算的規(guī)律一一進(jìn)行運(yùn)算可得答案.【詳解】解:由a,b,c≠1.考察對數(shù)2個公式:,,對選項(xiàng)A:,顯然與第二個公式不符,所以為假.對選項(xiàng)B:,顯然與第二個公式一致,所以為真.對選項(xiàng)C:,顯然與第一個公式不符,所以為假.對選項(xiàng)D:,同樣與第一個公式不符,所以為假.所以選B.【點(diǎn)睛】本題主要考查對數(shù)運(yùn)算的性質(zhì),熟練掌握對數(shù)運(yùn)算的各公式是解題的關(guān)鍵.7、B【解析】

根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進(jìn)行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.8、C【解析】

比較與時不等式左邊的項(xiàng),即可得到結(jié)果【詳解】因此不等式左邊為,選C.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題9、C【解析】

先算出的外接圓的半徑,然后根據(jù)勾股定理可得球的半徑,由此即可得到本題答案.【詳解】設(shè)點(diǎn)O為球心,因?yàn)椋缘耐饨訄A的圓心為AC的中點(diǎn)M,且半徑,又因?yàn)樵撉虻那蛐牡狡矫娴木嚯x為2,即,在中,,所以該球的半徑為,則該球的表面積為.故選:C【點(diǎn)睛】本題主要考查球的表面積的相關(guān)問題.10、D【解析】

根據(jù)所給等量關(guān)系,用表示出可得.代入中,構(gòu)造基本不等式即可求得的最小值.【詳解】因?yàn)?所以變形可得所以由基本不等式可得當(dāng)且僅當(dāng)時取等號,解得所以的最小值為故選:D【點(diǎn)睛】本題考查了基本不等式求最值的應(yīng)用,注意構(gòu)造合適的基本不等式形式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】

利用等差數(shù)列下標(biāo)性質(zhì)求解即可【詳解】由等差數(shù)列的性質(zhì)可知,,則.所以.故答案為:9【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),熟記性質(zhì)是關(guān)鍵,是基礎(chǔ)題12、2或【解析】

根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點(diǎn)睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.13、【解析】

列出所有的基本事件,并找出事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件,再利用古典概型的概率公式計(jì)算出所求事件的概率.【詳解】所有的基本事件有:、、、、、、、、、,共個,其中,事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件有:、、,共個,由古典概型的概率公式可知,事件“所取三條線段能構(gòu)成一個三角形”的概率為,故答案為.【點(diǎn)睛】本題考查古典概型的概率的計(jì)算,解題的關(guān)鍵就是列舉基本事件,常見的列舉方法有:枚舉法和樹狀圖法,列舉時應(yīng)遵循不重不漏的基本原則,考查計(jì)算能力,屬于中等題.14、【解析】

把不等式轉(zhuǎn)化為,即可求解.【詳解】由題意,不等式,等價于,解得.即不等式的解為故答案為:.【點(diǎn)睛】本題主要考查了分式不等式的求解,其中解答中熟記分式不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、8【解析】

畫出滿足約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】實(shí)數(shù),滿足條件的可行域如下圖所示:將目標(biāo)函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點(diǎn)時截距最大,,故答案為:8.【點(diǎn)睛】本題考查線性規(guī)劃的簡單應(yīng)用,解題關(guān)鍵是明確目標(biāo)函數(shù)的幾何意義.16、【解析】

首先利用直線方程求出直線斜率,通過斜率求出傾斜角.【詳解】由題知直線方程為,所以直線的斜率,又因?yàn)閮A斜角,所以傾斜角.故答案為:.【點(diǎn)睛】本題主要考查了直線傾斜角與直線斜率的關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】

(1)根據(jù)題中的新定義代入即可證出.(2)設(shè),,,代入通項(xiàng)解不等式組,使即可求解.(3)首先根據(jù)可求時,,當(dāng)時,,根據(jù)題中新定義求出成立,可得,再驗(yàn)證恒成立即可求解.【詳解】(1),且,則滿足,則數(shù)列是數(shù)列.綜上所述,結(jié)論是:數(shù)列是數(shù)列.(2)設(shè),,則,得,,,則數(shù)列的最大值為,則(3),當(dāng)時,當(dāng)時,,由,得,當(dāng)時,恒成立,則要使數(shù)列是數(shù)列,則的取值范圍為.【點(diǎn)睛】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.18、(1),的單調(diào)遞減區(qū)間是;(2).【解析】試題分析:(1)用坐標(biāo)表示向量條件,代入函數(shù)解析式中,運(yùn)用向量的坐標(biāo)運(yùn)算法則求出函數(shù)解析式并應(yīng)用二倍角公式以及兩角和的正弦公式化簡函數(shù)解析式,由三角函數(shù)的性質(zhì)可求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)將條件代入函數(shù)解析式可求出角,由三角形面積公式求出邊,再由余弦定理求出邊,再由正弦定理可求外接圓半徑.試題解析:(1)由題意得:.所以,函數(shù)的最小正周期為,由得函數(shù)的單調(diào)遞減區(qū)間是(2),解得,又的面積為.得.再由余弦定理,解得,即△為直角三角形.考點(diǎn):1.向量坐標(biāo)運(yùn)算;2.三角函數(shù)圖象與性質(zhì);3.正弦定理與余弦定理.19、(1)-π4【解析】

(1)兩向量垂直,坐標(biāo)關(guān)系滿足x1x2+y1y2=0,由已知可得關(guān)于sin【詳解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,兩向量垂直,求兩向量之和的模的最大值,當(dāng)計(jì)算到最大值為3+22時,由平方和公式還可以繼續(xù)化簡,即3+220、(1),(2)【解析】

(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來自高校的基本事件,進(jìn)而求出概率【詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設(shè)選中的2人都來自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來自高校的概率為【點(diǎn)睛】本題考查分層抽樣,考查古典概型,屬于基礎(chǔ)題21、(1)證明過程見詳解;(2);(3)存在實(shí)數(shù),使得數(shù)列為等差數(shù)列.【解析】

(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項(xiàng);(3)把數(shù)列an}、{bn}通項(xiàng)公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論