版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年湖北省孝感孝昌縣聯(lián)考十校聯(lián)考最后數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的算術(shù)平方根為()A. B. C. D.2.若一次函數(shù)的圖象經(jīng)過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.3.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間4.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.5.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°6.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣7.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限8.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.79.下列命題是真命題的個數(shù)有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數(shù)y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個10.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.10二、填空題(共7小題,每小題3分,滿分21分)11.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關(guān)系為________.(填“>”或“<”)12.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.13.某同學對甲、乙、丙、丁四個市場二月份每天的白菜價格進行調(diào)查,計算后發(fā)現(xiàn)這個月四個市場的價格平均值相同、方差分別為S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜價格最穩(wěn)定的市場是_____.14.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側(cè)面,所得的圓錐的高為______.15.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.16.比較大?。篲____.(填“<“,“=“,“>“)17.分解因式:_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經(jīng)過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.19.(5分)如圖,內(nèi)接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.20.(8分)某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?21.(10分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)22.(10分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為xm設(shè)垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.23.(12分)某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+1.設(shè)這種產(chǎn)品每天的銷售利潤為W元.(1)該農(nóng)戶想要每天獲得150元得銷售利潤,銷售價應(yīng)定為每千克多少元?(2)如果物價部門規(guī)定這種農(nóng)產(chǎn)品的銷售價不高于每千克28元,銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?24.(14分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關(guān)系?試說明理由;(3)若AD=4,AB=6,求的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點睛:此題主要考查了算術(shù)平方根的定義,解題時應(yīng)先明確是求哪個數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯誤.2、D【解析】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.3、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.4、B【解析】
俯視圖是從上面看幾何體得到的圖形,據(jù)此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.5、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.6、D【解析】
連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質(zhì)的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質(zhì)求解是關(guān)鍵.7、D【解析】
根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負,從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.8、B【解析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.9、C【解析】
根據(jù)菱形的性質(zhì)、垂徑定理、反比例函數(shù)和一次函數(shù)進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數(shù)y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.10、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.二、填空題(共7小題,每小題3分,滿分21分)11、>【解析】
觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;波動越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.12、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.13、乙.【解析】
據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定,即可得出答案.【詳解】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜價格最穩(wěn)定的市場是乙;故答案為:乙.【點睛】本題考查方差的意義.解題關(guān)鍵是掌握方差的意義:方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.14、4cm【解析】
求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長==4π,
圓錐的底面半徑為4π÷2π=2,
故圓錐的高為:=4,
故答案為4cm.【點睛】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.15、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).16、<【解析】
先比較它們的平方,進而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數(shù)的大小比較,帶二次根號的實數(shù),在比較它們的大小時,通常先比較它們的平方的大小.17、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應(yīng)用完全平方公式分解即可:.三、解答題(共7小題,滿分69分)18、;.【解析】
(1)由正方形的性質(zhì)可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;
(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.【點睛】二次函數(shù)的綜合應(yīng)用.解題的關(guān)鍵是:在(1)中確定出B、C的坐標是解題的關(guān)鍵,在(2)中把四邊形轉(zhuǎn)化成兩個三角形.19、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質(zhì)即可得出結(jié)論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長即可.本題解析:解:(1)證明:延長AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點睛:本題考查了等腰三角形的判定與性質(zhì)、三角函數(shù)及圓的有關(guān)計算,(1)中由三線合一定理求解是解題的關(guān)鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數(shù)及三角形中位線定理求出AC即可,本題綜合性強,有一定難度.20、(1)111,51;(2)11.【解析】
(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)在獨立完成面積為411m2區(qū)域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)題意得:解得:x=51,經(jīng)檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應(yīng)安排甲隊工作11天.21、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.22、(1)見詳解;(2)x=18;(3)416m2.【解析】
(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質(zhì)求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設(shè)菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度跨境電商主體變更與物流及客服人員勞動合同3篇
- 二零二五版海外農(nóng)業(yè)開發(fā)項目勞務(wù)輸出合同2篇
- 二零二五版股權(quán)回購項目擔保及投資風險控制合同3篇
- 二零二五年教育培訓(xùn)機構(gòu)招生合同正本3篇
- 二零二五版辦公樓物業(yè)客戶關(guān)系管理與滿意度調(diào)查合同3篇
- 二零二五年度行政合同在社會保障體系中的構(gòu)建與實施2篇
- 二零二五年股東股權(quán)轉(zhuǎn)讓合同范本3篇
- 二零二五年度祠堂傳統(tǒng)節(jié)日慶典活動承包合同3篇
- 二零二五版企業(yè)間借款合同模板與債務(wù)轉(zhuǎn)讓協(xié)議標準范本6篇
- 二零二五年綠色能源板車租賃服務(wù)合同3篇
- 民宿建筑設(shè)計方案
- 干部基本信息審核認定表
- 2023年11月外交學院(中國外交培訓(xùn)學院)2024年度公開招聘24名工作人員筆試歷年高頻考點-難、易錯點薈萃附答案帶詳解
- 春節(jié)行車安全常識普及
- 電機維護保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤分析
- 春節(jié)拜年的由來習俗來歷故事
- 2021火災(zāi)高危單位消防安全評估導(dǎo)則
- 佛山市服務(wù)業(yè)發(fā)展五年規(guī)劃(2021-2025年)
- 房屋拆除工程監(jiān)理規(guī)劃
- 醫(yī)院保安服務(wù)方案(技術(shù)方案)
評論
0/150
提交評論