版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省宣城市中學2022年中考數(shù)學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.按如圖所示的方法折紙,下面結(jié)論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個2.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1074.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(
)A. B. C. D.5.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:26.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經(jīng)濟結(jié)構(gòu)從“一煤獨大”向多元支撐轉(zhuǎn)變,三年累計退出煤炭過剩產(chǎn)能8800余萬噸,煤層氣產(chǎn)量突破56億立方米.數(shù)據(jù)56億用科學記數(shù)法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10107.如圖所示的正方體的展開圖是()A. B. C. D.8.如圖,四個有理數(shù)在數(shù)軸上的對應點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q9.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊10.如圖,在平面直角坐標系中,以O(shè)為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)12.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=______.13.分解因式:.14.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.15.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.16.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)由我國完全自主設(shè)計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.18.(8分)如圖,在△OAB中,OA=OB,C為AB中點,以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.19.(8分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.20.(8分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設(shè)步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關(guān)系式;求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?21.(8分)已知a+b=3,ab=2,求代數(shù)式a3b+2a2b2+ab3的值.22.(10分)文藝復興時期,意大利藝術(shù)大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.23.(12分)如圖,點O為Rt△ABC斜邊AB上的一點,以O(shè)A為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).24.已知關(guān)于x,y的二元一次方程組的解為,求a、b的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.2、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、A【解析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).4、D【解析】
根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點睛】熟悉掌握銳角三角函數(shù)的定義是關(guān)鍵.5、D【解析】
依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.6、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【詳解】56億=56×108=5.6×101,故選C.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關(guān)鍵.7、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關(guān)系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關(guān)鍵點:把展開圖折回立方體再觀察.8、C【解析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.9、C【解析】
根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,
∴點A到原點的距離最大,點C其次,點B最小,
又∵AB=BC,
∴原點O的位置是在點B、C之間且靠近點B的地方.
故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關(guān)鍵.10、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.12、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.14、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點:整體思想.15、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.16、10<a≤10.【解析】
根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識點.三、解答題(共8題,共72分)17、還需要航行的距離的長為20.4海里.【解析】分析:根據(jù)題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數(shù)得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數(shù)的應用;求出CD的長度是解決問題的關(guān)鍵.18、(1)見解析;(2)見解析;(3).【解析】
(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;
(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;
(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設(shè)BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.19、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【解析】
(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.20、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】
(1)由圖象直接寫出函數(shù)關(guān)系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關(guān)系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關(guān)系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設(shè)甲、乙兩班學生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.21、1【解析】
先提取公因式ab,再根據(jù)完全平方公式進行二次分解,然后代入數(shù)據(jù)進行計算即可得解.【詳解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,將a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代數(shù)式a3b+2a2b2+ab3的值是1.22、S1,S3,S4,S5,1【解析】
利用圖形的拼割,正方形的性質(zhì),尋找等面積的圖形,即可解決問題.【詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中信息技術(shù)選修2說課稿-4.3.1 選擇計算機動畫制作工具1-教科版001
- IT行業(yè)安全生產(chǎn)培訓
- 中西醫(yī)治療心血管病
- 培訓師自我介紹與破冰
- 《發(fā)熱護理》課件
- 《社會態(tài)度》課件
- 2024版液化天然氣長期供應合同2篇
- 2024版加工承攬合同:甲方委托乙方加工生產(chǎn)000件服裝的具體要求
- 教育行業(yè)會議服務協(xié)議
- 數(shù)據(jù)中心建設(shè)與運營合同
- 排污許可證辦理合同1(2025年)
- GB/T 44890-2024行政許可工作規(guī)范
- 上??颇恳豢荚囶}庫參考資料1500題-上海市地方題庫-0
- 軍工合作合同范例
- 【7地XJ期末】安徽省宣城市寧國市2023-2024學年七年級上學期期末考試地理試題(含解析)
- 2025年中國稀土集團總部部分崗位社會公開招聘管理單位筆試遴選500模擬題附帶答案詳解
- 超市柜臺長期出租合同范例
- 廣東省廣州市2025屆高三上學期12月調(diào)研測試語文試題(含答案)
- 【8物(科)期末】合肥市第四十五中學2023-2024學年八年級上學期期末物理試題
- 統(tǒng)編版2024-2025學年三年級語文上冊期末學業(yè)質(zhì)量監(jiān)測試卷(含答案)
- 2024-2025學年深圳市初三適應性考試模擬試卷歷史試卷
評論
0/150
提交評論