湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第1頁
湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第2頁
湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第3頁
湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第4頁
湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省松滋市新江口鎮(zhèn)第一中學2023-2024學年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2017年,太原市GDP突破三千億元大關,達到3382億元,經(jīng)濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數(shù)據(jù)“3382億元”用科學記數(shù)法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元2.平面上直線a、c與b相交(數(shù)據(jù)如圖),當直線c繞點O旋轉(zhuǎn)某一角度時與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°3.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°4.關于x的一元二次方程x2-2x-(m-1)=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.且 B. C.且 D.5.下列計算結(jié)果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)26.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.17.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結(jié),滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13268.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應相等 B.三條邊對應相等C.兩邊和它們的夾角對應相等 D.三個角對應相等9.一個幾何體由大小相同的小正方體搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在這個位置小正方體的個數(shù).從左面看到的這個幾何體的形狀圖的是()A. B. C. D.10.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤11.反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣1;②在每個象限內(nèi),y隨x的增大而增大;③若點A(﹣1,h),B(2,k)在圖象上,則h<k;④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.412.關于x的方程3x+2a=x﹣5的解是負數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).14.因式分解:=_______________.15.從一副54張的撲克牌中隨機抽取一張,它是K的概率為_____.16.飛機著陸后滑行的距離S(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關系式是s=60t﹣1.2t2,那么飛機著陸后滑行_____秒停下.17.用一個半徑為10cm半圓紙片圍成一個圓錐的側(cè)面(接縫忽略不計),則該圓錐的高為.18.分解因式:3a2﹣12=___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|20.(6分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.21.(6分)某高中進行“選科走班”教學改革,語文、數(shù)學、英語三門為必修學科,另外還需從物理、化學、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學生人;請將條形統(tǒng)計圖補充完整;該班某同學物理成績特別優(yōu)異,已經(jīng)從選修學科中選定物理,還需從余下選修學科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學恰好選中化學、歷史兩科的概率.22.(8分)先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.23.(8分)如圖,A,B,C三個糧倉的位置如圖所示,A糧倉在B糧倉北偏東26°,180千米處;C糧倉在B糧倉的正東方,A糧倉的正南方.已知A,B兩個糧倉原有存糧共450噸,根據(jù)災情需要,現(xiàn)從A糧倉運出該糧倉存糧的支援C糧倉,從B糧倉運出該糧倉存糧的支援C糧倉,這時A,B兩處糧倉的存糧噸數(shù)相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B兩處糧倉原有存糧各多少噸?(2)C糧倉至少需要支援200噸糧食,問此調(diào)撥計劃能滿足C糧倉的需求嗎?(3)由于氣象條件惡劣,從B處出發(fā)到C處的車隊來回都限速以每小時35公里的速度勻速行駛,而司機小王的汽車油箱的油量最多可行駛4小時,那么小王在途中是否需要加油才能安全的回到B地?請你說明理由.24.(10分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.25.(10分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?26.(12分)(1)計算:.(2)解方程:x2﹣4x+2=027.(12分)如圖,關于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】3382億=338200000000=3.382×1.故選:D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】

先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,同旁內(nèi)角互補.3、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內(nèi)角與外角,關鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).4、A【解析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【詳解】∵關于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個不相等的實數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點睛】本題考查了根的判別式,牢記“當△>1時,方程有兩個不相等的實數(shù)根”是解題的關鍵.5、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.6、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減??;x>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a7、C【解析】由題意滿七進一,可得該圖示為七進制數(shù),化為十進制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進制轉(zhuǎn)化為十進制,考查運算能力,屬于基礎題.8、D【解析】

解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應的判定方法,不能由此判定三角形全等;故選D.9、B【解析】分析:由已知條件可知,從正面看有1列,每列小正方數(shù)形數(shù)目分別為4,1,2;從左面看有1列,每列小正方形數(shù)目分別為1,4,1.據(jù)此可畫出圖形.詳解:由俯視圖及其小正方體的分布情況知,該幾何體的主視圖為:該幾何體的左視圖為:故選:B.點睛:此題主要考查了幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內(nèi)的數(shù)字,可知主視圖的列數(shù)與俯視圖的列數(shù)相同,且每列小正方形數(shù)目為俯視圖中該列小正方形數(shù)字中的最大數(shù)字.左視圖的列數(shù)與俯視圖的行數(shù)相同,且每列小正方形數(shù)目為俯視圖中相應行中正方形數(shù)字中的最大數(shù)字.10、D【解析】

根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設正方形ABCD的邊長為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關鍵.11、B【解析】

根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯誤;當反比例函數(shù)的圖象位于一三象限時,在每一象限內(nèi),y隨x的增大而減小,故②錯誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.12、D【解析】

先解方程求出x,再根據(jù)解是負數(shù)得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數(shù),所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數(shù)時,不等號方向要改變.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).14、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).15、【解析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】一副撲克牌共有54張,其中只有4張K,∴從一副撲克牌中隨機抽出一張牌,得到K的概率是=,故答案為:.【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、1【解析】

飛機停下時,也就是滑行距離最遠時,即在本題中需求出s最大時對應的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當t=1秒時,飛機才能停下來.故答案為1.【點睛】本題考查了二次函數(shù)的應用.解題時,利用配方法求得t=2時,s取最大值.17、53【解析】試題分析:根據(jù)圖形可知圓錐的側(cè)面展開圖的弧長為2π×10÷2=10π(cm),因此圓錐的底面半徑為10π÷2π=5(cm),因此圓錐的高為:102-5考點:圓錐的計算18、3(a+2)(a﹣2)【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、-4【解析】分析:第一項根據(jù)乘方的意義計算,第二項非零數(shù)的零次冪等于1,第三項根據(jù)特殊角銳角三角函數(shù)值計算,第四項根據(jù)絕對值的意義化簡.詳解:原式=-4+1-2×+-1=-4點睛:本題考查了實數(shù)的運算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對值的意義是解答本題的關鍵.20、4【解析】

已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關鍵.21、(1)50人;(2)補圖見解析;(3).【解析】分析:(1)根據(jù)化學學科人數(shù)及其所占百分比可得總?cè)藬?shù);(2)根據(jù)各學科人數(shù)之和等于總?cè)藬?shù)求得歷史的人數(shù)即可;(3)列表得出所有等可能結(jié)果,從中找到恰好選中化學、歷史兩科的結(jié)果數(shù),再利用概率公式計算可得.詳解:(1)該班學生總數(shù)為10÷20%=50人;(2)歷史學科的人數(shù)為50﹣(5+10+15+6+6)=8人,補全圖形如下:(3)列表如下:化學生物政治歷史地理化學生物、化學政治、化學歷史、化學地理、化學生物化學、生物政治、生物歷史、生物地理、生物政治化學、政治生物、政治歷史、政治地理、政治歷史化學、歷史生物、歷史政治、歷史地理、歷史地理化學、地理生物、地理政治、地理歷史、地理由表可知,共有20種等可能結(jié)果,其中該同學恰好選中化學、歷史兩科的有2種結(jié)果,所以該同學恰好選中化學、歷史兩科的概率為.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.22、﹣x+1,2.【解析】

先將括號內(nèi)的分式通分,再將乘方轉(zhuǎn)化為乘法,約分,最后代入數(shù)值求解即可.【詳解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)?=﹣x+1,當x=﹣1時,原式=1+1=2.【點睛】本題考查了整式的混合運算-化簡求值,解題的關鍵是熟練的掌握整式的混合運算法則.23、(1)A、B兩處糧倉原有存糧分別是270,1噸;(2)此次調(diào)撥能滿足C糧倉需求;(3)小王途中須加油才能安全回到B地.【解析】

(1)由題意可知要求A,B兩處糧倉原有存糧各多少噸需找等量關系,即A處存糧+B處存糧=450噸,A處存糧的五分之二=B處存糧的五分之三,據(jù)等量關系列方程組求解即可;(2)分別求出A處和B處支援C處的糧食,將其加起來與200噸比較即可;(3)由題意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的長,可以運用三角函數(shù)解直角三角形.【詳解】(1)設A,B兩處糧倉原有存糧x,y噸根據(jù)題意得:解得:x=270,y=1.答:A,B兩處糧倉原有存糧分別是270,1噸.(2)A糧倉支援C糧倉的糧食是×270=162(噸),B糧倉支援C糧倉的糧食是×1=72(噸),A,B兩糧倉合計共支援C糧倉糧食為162+72=234(噸).∵234>200,∴此次調(diào)撥能滿足C糧倉需求.(3)如圖,根據(jù)題意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=,∴BC=AB?sin∠BAC=1×0.44=79.2.∵此車最多可行駛4×35=140(千米)<2×79.2,∴小王途中須加油才能安全回到B地.【點睛】求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.24、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】

(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉(zhuǎn)90°得到對應點,順次連接即可.A′B′在旋轉(zhuǎn)過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【詳解】解:(1)見圖中△A′B′C′

(2)見圖中△A″B′C″

扇形的面積(平方單位).【點睛】本題主要考查了位似圖形及旋轉(zhuǎn)變換作圖的方法及扇形的面積公式.25、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關于m的不等式組,則可求得m的取值范圍,且m為整數(shù),則可求得m的值,即可求得進貨方案;②用m可表示出W,可得到關于m的一次函數(shù),利用一次函數(shù)的性質(zhì)可求得答案.【詳解】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)題意可得,解得,答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①若購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,根據(jù)題意可得,解得75<m≤78,∵m為整數(shù),∴m的值為76、77、78,∴進貨方案有3種,分別為:方案一,購進甲種羽毛球76筒,乙種羽毛球為124筒,方案二,購進甲種羽毛球77筒,乙種羽毛球為123筒,方案一,購進甲種羽毛球78筒,乙種羽毛球為122筒;②根據(jù)題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W隨m的增大而增大,且75<m≤78,∴當m=78時,W最大,W最大值為1390,答:當m=78時,所獲利潤最大,最大利潤為1390元.【點睛】本題考查了二元一次方程組的應用、一元一次不等式組的應用、一次函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論