2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第1頁(yè)
2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第2頁(yè)
2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第3頁(yè)
2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第4頁(yè)
2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022屆云南省昭通市昭陽(yáng)區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.2.如圖1,將三角板的直角頂點(diǎn)放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°3.一個(gè)多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個(gè)多邊形的邊數(shù)是()A.7 B.8 C.9 D.104.若正比例函數(shù)y=3x的圖象經(jīng)過(guò)A(﹣2,y1),B(﹣1,y2)兩點(diǎn),則y1與y2的大小關(guān)系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y25.某種超薄氣球表面的厚度約為,這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.6.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°7.如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)8.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書(shū)簽,每個(gè)書(shū)簽上寫(xiě)著一本書(shū)的名稱(chēng)或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書(shū)簽中隨機(jī)抽取兩張,則抽到的書(shū)簽正好是相對(duì)應(yīng)的書(shū)名和作者姓名的概率是()A. B. C. D.9.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對(duì)學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對(duì)某宿舍進(jìn)行消毒的過(guò)程中,先經(jīng)過(guò)的集中藥物噴灑,再封閉宿舍,然后打開(kāi)門(mén)窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開(kāi)門(mén)窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是()A.經(jīng)過(guò)集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了C.當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對(duì)人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開(kāi)始,需經(jīng)過(guò)后,學(xué)生才能進(jìn)入室內(nèi)10.某自行車(chē)廠準(zhǔn)備生產(chǎn)共享單車(chē)4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來(lái)提高了20%,結(jié)果共用了18天完成任務(wù),若設(shè)原來(lái)每天生產(chǎn)自行車(chē)x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=1811.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.12.下列實(shí)數(shù)0,,,π,其中,無(wú)理數(shù)共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖所示一棱長(zhǎng)為3cm的正方體,把所有的面均分成3×3個(gè)小正方形.其邊長(zhǎng)都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點(diǎn)A沿表面爬行至側(cè)面的B點(diǎn),最少要用_____秒鐘.14.寫(xiě)出經(jīng)過(guò)點(diǎn)(0,0),(﹣2,0)的一個(gè)二次函數(shù)的解析式_____(寫(xiě)一個(gè)即可).15.如圖,點(diǎn)E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長(zhǎng)為_(kāi)______.16.若一個(gè)多邊形每個(gè)內(nèi)角為140°,則這個(gè)多邊形的邊數(shù)是________.17.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點(diǎn)D,點(diǎn)P在線段DB上,若AP2-PB2=48,則△PCD的面積為_(kāi)___.18.二次函數(shù)y=(a-1)x2-x+a2-1

的圖象經(jīng)過(guò)原點(diǎn),則a的值為_(kāi)_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)某一天,水果經(jīng)營(yíng)戶(hù)老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,后再到水果市場(chǎng)去賣(mài),已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:品名獼猴桃芒果批發(fā)價(jià)元千克2040零售價(jià)元千克2650他購(gòu)進(jìn)的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣(mài)完,他能賺多少錢(qián)?20.(6分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.(1)求證:DF是BF和CF的比例中項(xiàng);(2)在AB上取一點(diǎn)G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.21.(6分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.22.(8分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對(duì)稱(chēng)點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫(xiě)出四邊形AQCP的周長(zhǎng);(2)在圖2中畫(huà)出一個(gè)以線段AC為對(duì)角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.23.(8分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).求二次函數(shù)y=ax2+2x+c的表達(dá)式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.24.(10分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫(xiě)作法);(2)垂直平分線l交AC于點(diǎn)D,求證:AB=2DH.25.(10分)定義:和三角形一邊和另兩邊的延長(zhǎng)線同時(shí)相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程.26.(12分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開(kāi)始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個(gè)比一個(gè)小.操作步驟作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個(gè)正方形ABCD的對(duì)角線AC上截取AE=a1,再作EF⊥AC于點(diǎn)E,EF與邊BC交于點(diǎn)F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個(gè)正方形CEFG;第三步在第二個(gè)正方形的對(duì)角線CF上截取FH=a2,再作IH⊥CF于點(diǎn)H,IH與邊CE交于點(diǎn)I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個(gè)正方形CHIJ這個(gè)過(guò)程可以不斷進(jìn)行下去.若第n個(gè)正方形的邊長(zhǎng)為an,用只含a1的式子表示an為④請(qǐng)解決以下問(wèn)題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫(huà)出第三個(gè)正方形CHIJ(不要求尺規(guī)作圖).27.(12分)科研所計(jì)劃建一幢宿舍樓,因?yàn)榭蒲兴鶎?shí)驗(yàn)中會(huì)產(chǎn)生輻射,所以需要有兩項(xiàng)配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對(duì)宿含樓進(jìn)行防輻射處理;已知防輻射費(fèi)y萬(wàn)元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時(shí),防輻射費(fèi)用為720萬(wàn)元;當(dāng)科研所到宿含樓的距離為3km或大于3km時(shí),輻射影響忽略不計(jì),不進(jìn)行防輻射處理,設(shè)修路的費(fèi)用與x2成正比,且比例系數(shù)為m萬(wàn)元,配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi).(1)當(dāng)科研所到宿舍樓的距離x=3km時(shí),防輻射費(fèi)y=____萬(wàn)元,a=____,b=____;(2)若m=90時(shí),求當(dāng)科研所到宿舍樓的距離為多少km時(shí),配套工程費(fèi)最少?(3)如果最低配套工程費(fèi)不超過(guò)675萬(wàn)元,且科研所到宿含樓的距離小于等于3km,求m的范圍?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)平行四邊形的性質(zhì)和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質(zhì)可知∠B=∠AOC,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點(diǎn)睛】該題主要考查了圓周角定理及其應(yīng)用問(wèn)題;應(yīng)牢固掌握該定理并能靈活運(yùn)用.2、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點(diǎn):平行線的性質(zhì);三角形的外角的性質(zhì).3、A【解析】

設(shè)這個(gè)正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識(shí)點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.4、A【解析】

分別把點(diǎn)A(?1,y1),點(diǎn)B(?1,y1)代入函數(shù)y=3x,求出點(diǎn)y1,y1的值,并比較出其大小即可.【詳解】解:∵點(diǎn)A(?1,y1),點(diǎn)B(?1,y1)是函數(shù)y=3x圖象上的點(diǎn),∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【點(diǎn)睛】本題考查的是一次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即一次函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.5、A【解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】,故選:A.【點(diǎn)睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.6、B【解析】

直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對(duì)頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.7、C【解析】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).8、D【解析】

根據(jù)題意先畫(huà)出樹(shù)狀圖得出所有等情況數(shù)和到的書(shū)簽正好是相對(duì)應(yīng)的書(shū)名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫(huà)圖如下:共有12種等情況數(shù),抽到的書(shū)簽正好是相對(duì)應(yīng)的書(shū)名和作者姓名的有2種情況,則抽到的書(shū)簽正好是相對(duì)應(yīng)的書(shū)名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹(shù)狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.9、C【解析】

利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時(shí),y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時(shí)間達(dá)到了11min,正確,不符合題意;C、y=5時(shí),x=2.5或24,24-2.5=21.5<35,故本選項(xiàng)錯(cuò)誤,符合題意;D、正確.不符合題意,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識(shí),解題的關(guān)鍵是讀懂圖象信息,屬于中考常考題型.10、B【解析】

根據(jù)前后的時(shí)間和是18天,可以列出方程.【詳解】若設(shè)原來(lái)每天生產(chǎn)自行車(chē)x輛,根據(jù)前后的時(shí)間和是18天,可以列出方程.故選B【點(diǎn)睛】本題考核知識(shí)點(diǎn):分式方程的應(yīng)用.解題關(guān)鍵點(diǎn):根據(jù)時(shí)間關(guān)系,列出分式方程.11、B【解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進(jìn)而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進(jìn)而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.12、B【解析】

根據(jù)無(wú)理數(shù)的概念可判斷出無(wú)理數(shù)的個(gè)數(shù).【詳解】解:無(wú)理數(shù)有:,.故選B.【點(diǎn)睛】本題主要考查了無(wú)理數(shù)的定義,注意帶根號(hào)的要開(kāi)不盡方才是無(wú)理數(shù),無(wú)限不循環(huán)小數(shù)為無(wú)理數(shù).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2.5秒.【解析】

把此正方體的點(diǎn)A所在的面展開(kāi),然后在平面內(nèi),利用勾股定理求點(diǎn)A和B點(diǎn)間的線段長(zhǎng),即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長(zhǎng)等于5,另一條直角邊長(zhǎng)等于2,利用勾股定理可求得.【詳解】解:因?yàn)榕佬新窂讲晃ㄒ?,故分情況分別計(jì)算,進(jìn)行大、小比較,再?gòu)母鱾€(gè)路線中確定最短的路線.(1)展開(kāi)前面右面由勾股定理得AB=cm;(2)展開(kāi)底面右面由勾股定理得AB==5cm;所以最短路徑長(zhǎng)為5cm,用時(shí)最少:5÷2=2.5秒.【點(diǎn)睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類(lèi)問(wèn)題的關(guān)鍵.14、y=x2+2x(答案不唯一).【解析】

設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【詳解】∵拋物線過(guò)點(diǎn)(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a(bǔ)=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【點(diǎn)睛】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開(kāi)放性題目,答案不唯一.15、5.【解析】

試題解析:過(guò)E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點(diǎn):1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.16、九【解析】

根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)進(jìn)行求解即可.【詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【點(diǎn)睛】本題考查了多邊形的內(nèi)角和定理,解題的關(guān)鍵是熟練的掌握多邊形的內(nèi)角和定理.17、6【解析】

根據(jù)等角對(duì)等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于利用等腰三角形的“三線合一18、-1【解析】

將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1的圖象經(jīng)過(guò)原點(diǎn),∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,圖象過(guò)原點(diǎn),可得出x=2時(shí),y=2.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)購(gòu)進(jìn)獼猴桃20千克,購(gòu)進(jìn)芒果30千克;(2)能賺420元錢(qián).【解析】

設(shè)購(gòu)進(jìn)獼猴桃x千克,購(gòu)進(jìn)芒果y千克,由總價(jià)單價(jià)數(shù)量結(jié)合老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;根據(jù)利潤(rùn)銷(xiāo)售收入成本,即可求出結(jié)論.【詳解】設(shè)購(gòu)進(jìn)獼猴桃x千克,購(gòu)進(jìn)芒果y千克,根據(jù)題意得:,解得:.答:購(gòu)進(jìn)獼猴桃20千克,購(gòu)進(jìn)芒果30千克.元.答:如果獼猴桃和芒果全部賣(mài)完,他能賺420元錢(qián).【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;根據(jù)數(shù)量關(guān)系,列式計(jì)算.20、證明見(jiàn)解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進(jìn)行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問(wèn)題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點(diǎn),∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.21、(1)證明見(jiàn)解析(2)當(dāng)四邊形BEDF是菱形時(shí),四邊形AGBD是矩形;證明見(jiàn)解析;【解析】

(1)在證明全等時(shí)常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來(lái)證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過(guò)角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點(diǎn)、分別是、的中點(diǎn),∴,.∴.在和中,,∴.解:當(dāng)四邊形是菱形時(shí),四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點(diǎn)睛】本題主要考查了平行四邊形的基本性質(zhì)和矩形的判定及全等三角形的判定.平行四邊形基本性質(zhì):①平行四邊形兩組對(duì)邊分別平行;②平行四邊形的兩組對(duì)邊分別相等;③平行四邊形的兩組對(duì)角分別相等;④平行四邊形的對(duì)角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.22、(1)作圖見(jiàn)解析;;(2)作圖見(jiàn)解析.【解析】試題分析:(1)通過(guò)數(shù)格子可得到點(diǎn)P關(guān)于AC的對(duì)稱(chēng)點(diǎn),再直接利用勾股定理可得到周長(zhǎng);(2)利用網(wǎng)格結(jié)合矩形的性質(zhì)以及勾股定理可畫(huà)出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長(zhǎng)為:;(2)如圖2所示:四邊形ABCD即為所求.考點(diǎn):1軸對(duì)稱(chēng);2勾股定理.23、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點(diǎn)P的坐標(biāo)為(,)時(shí),四邊形ACPB的最大面積值為【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對(duì)角線互相垂直且平分,可得P點(diǎn)的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長(zhǎng),根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點(diǎn)P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點(diǎn)P的縱坐標(biāo),當(dāng)時(shí),即解得(不合題意,舍),∴點(diǎn)P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時(shí),四邊形ABPC的面積最大.當(dāng)m=時(shí),,即P點(diǎn)的坐標(biāo)為當(dāng)點(diǎn)P的坐標(biāo)為時(shí),四邊形ACPB的最大面積值為.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點(diǎn)的縱坐標(biāo),又利用了自變量與函數(shù)值的對(duì)應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).24、(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解析】

(1)利用線段垂直平分線的作法,分別以A,B為端點(diǎn),大于為半徑作弧,得出直線l即可;

(2)利用利用平行線的性質(zhì)以及平行線分線段成比例定理得出點(diǎn)D是AC的中點(diǎn),進(jìn)而得出答案.【詳解】解:(1)如圖所示:直線l即為所求;

(2)證明:∵點(diǎn)H是AB的中點(diǎn),且DH⊥AB,∴DH∥BC,∴點(diǎn)D是AC的中點(diǎn),∵∴AB=2DH.【點(diǎn)睛】考查作圖—基本作圖,線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)等,熟練掌握垂直平分線的性質(zhì)是解題的性質(zhì).25、(1)D、E、F三點(diǎn)是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長(zhǎng)定理及梅氏定理即可求證;(2)利用相似和韋達(dá)定理即可求解.解:(1)結(jié)論:D、E、F三點(diǎn)是同在一條直線上.證明:分別延長(zhǎng)AD、BC交于點(diǎn)K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長(zhǎng)定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點(diǎn)共線,即D、E、F三點(diǎn)共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點(diǎn)共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點(diǎn)共圓.設(shè)⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達(dá)定理可知:分別以、為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程是6x2﹣13x+6=1.點(diǎn)睛:本是一道關(guān)于圓的綜合題.正確分析圖形并應(yīng)用圖形的性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論