版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆日照市重點中學中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)2.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.3.2016年底安徽省已有13個市邁入“高鐵時代”,現(xiàn)正在建設的“合安高鐵”項目,計劃總投資334億元人民幣.把334億用科學記數(shù)法可表示為()A.0.334×1011B.3.34×10104.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>5.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉一扇門,門在空中運動的痕跡6.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間7.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.38.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S9的值為()A.()6 B.()7 C.()6 D.()79.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)10.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD11.在平面直角坐標系中,點P(m,2m-2),則點P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知P是線段AB的黃金分割點,且PA>PB.若S1表示以PA為一邊的正方形的面積,S2表示長是AB、寬是PB的矩形的面積,則S1_______S2.(填“>”“="”“"<”)14.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結EF.(1)線段BE與AF的位置關系是,=.(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉角a的度數(shù).15.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.17.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.18.________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.20.(6分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.21.(6分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關于x的關系式(結果保留π).22.(8分)閱讀材料,解答問題.材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”問題:(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).23.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.求證:MD=MC;若⊙O的半徑為5,AC=4,求MC的長.24.(10分)如圖,用紅、藍兩種顏色隨機地對A,B,C三個區(qū)域分別進行涂色,每個區(qū)域必須涂色并且只能涂一種顏色,請用列舉法(畫樹狀圖或列表)求A,C兩個區(qū)域所涂顏色不相同的概率.25.(10分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?26.(12分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發(fā)現(xiàn)①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.27.(12分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據(jù)調査結果繪制了如下尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:這次接受調查的市民總人數(shù)是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數(shù)是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數(shù)的性質,利用條件求得二次函數(shù)的解析式是解題的關鍵.2、C【解析】
根據(jù)定義運算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側的部分;當x<0時,圖象是y=對稱軸左側的部分,所以C選項是正確的.【點睛】本題考查了二次函數(shù)的圖象,利用定義運算“※”為:a※b=得出分段函數(shù)是解題關鍵.3、B【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).解:334億=3.34×1010“點睛”此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.5、B【解析】
本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【點睛】本題考查了點、線、面、體,準確認識生活實際中的現(xiàn)象是解題的關鍵.點動成線、線動成面、面動成體.6、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.7、C【解析】
延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.8、A【解析】試題分析:如圖所示.∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.觀察發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.當n=9時,S9=()9﹣2=()6,故選A.考點:勾股定理.9、A【解析】
直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.10、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.
故選B.【點睛】本題考查了平行四邊形的判定與性質,注意根據(jù)題意證得四邊形BFDE是平行四邊形是關鍵.11、B【解析】
根據(jù)坐標平面內點的坐標特征逐項分析即可.【詳解】A.若點P(m,2m-2)在第一象限,則有:m>02m-2>0解之得m>1,∴點P可能在第一象限;B.若點P(m,2m-2)在第二象限,則有:m<02m-2>0解之得不等式組無解,∴點P不可能在第二象限;C.若點P(m,2m-2)在第三象限,則有:m<02m-2<0解之得m<1,∴點P可能在第三象限;D.若點P(m,2m-2)在第四象限,則有:m>02m-2<0解之得0<m<1,∴點P可能在第四象限;故選B.【點睛】本題考查了不等式組的解法,坐標平面內點的坐標特征,第一象限內點的坐標特征為(+,+),第二象限內點的坐標特征為(-,+),第三象限內點的坐標特征為(-,-),第四象限內點的坐標特征為(+,-),x軸上的點縱坐標為0,y軸上的點橫坐標為0.12、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、=.【解析】
黃金分割點,二次根式化簡.【詳解】設AB=1,由P是線段AB的黃金分割點,且PA>PB,根據(jù)黃金分割點的,AP=,BP=.∴.∴S1=S1.14、(1)互相垂直;;(2)結論仍然成立,證明見解析;(3)135°.【解析】
(1)結合已知角度以及利用銳角三角函數(shù)關系求出AB的長,進而得出答案;
(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;
(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵點E,F(xiàn)分別是線段BC,AC的中點,
∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,
∴EC=BC,F(xiàn)C=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延長BE交AC于點O,交AF于點M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.15、75°【解析】
先根據(jù)同旁內角互補,兩直線平行得出AC∥DF,再根據(jù)兩直線平行內錯角相等得出∠2=∠A=45°,然后根據(jù)三角形內角與外角的關系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點睛】本題考查了平行線的判定與性質,三角形外角的性質,求出∠2=∠A=45°是解題的關鍵.16、2【解析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質,勾股定理以及旋轉的性質,解題時注意:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.17、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質以及等腰直角三角形的性質,即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.18、1【解析】
先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.【點睛】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質得到結論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質.20、見解析;.【解析】
(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數(shù)的圖象上的有、、這3種結果,點在函數(shù)的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】
(1)根據(jù)題意,得AC=CN+PN,進一步求得AB的長,即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質求得MB的長,再根據(jù)相似三角形的對應邊的比相等,求得圓的半徑即可.【詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當∠CPN=60°時,x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分線,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9?MB1=9?(6x﹣x1),∴y=π?EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【點睛】此題主要考查了相似三角形的應用以及菱形的性質和二次函數(shù)的應用,難點是第(3)問,熟練運用菱形的性質、相似三角形的性質和二次函數(shù)的實際應用.22、(1)2,2;(2)2,理由見解析;(3)2.【解析】
(1)作P5H5垂直于x軸,垂足為H5,把四邊形P1P2P3P2和四邊形P2P3P2P5的轉化為SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3來求解;(2)(3)由圖可知,Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數(shù)解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,將四邊形面積轉化為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2來解答.【詳解】(1)作P5H5垂直于x軸,垂足為H5,由圖可知SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==2,SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==2;(2)作Pn﹣1Hn﹣1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x軸,垂足為Hn﹣1、Hn、Hn+1、Hn+2,由圖可知Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數(shù)解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,四邊形Pn﹣1PnPn+1Pn+2的面積為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2==2;(3)S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=-=2.【點睛】本題是一道二次函數(shù)的綜合題,考查了根據(jù)函數(shù)坐標特點求圖形面積的知識,解答時要注意,前一小題為后面的題提供思路,由于計算量極大,要仔細計算,以免出錯,23、(1)證明見解析;(2)MC=.【解析】【分析】(1)連接OC,利用切線的性質證明即可;(2)根據(jù)相似三角形的判定和性質以及勾股定理解答即可.【詳解】(1)連接OC,∵CN為⊙O的切線,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由題意可知AB=5×2=10,AC=4,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【點睛】本題考查了切線的判定和性質、相似三角形的判定和性質、勾股定理等知識,準確添加輔助線,正確尋找相似三角形是解決問題的關鍵.24、.【解析】試題分析:先根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結果與A,C兩個區(qū)域所涂顏色不相同的的情況,利用概率公式求出概率.試題解析:解:畫樹狀圖如答圖:∵共有8種不同的涂色方法,其中A,C兩個區(qū)域所涂顏色不相同的的情況有4種,∴P(A,C兩個區(qū)域所涂顏色不相同)=.考點:1.畫樹狀圖或列表法;2.概率.25、(1)m=8,反比例函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新學年教學工作總體規(guī)劃計劃
- 風濕免疫科護士工作總結
- 2024年版權質押合同:某文學作品
- 2024年度學校夜間守護崗位服務合同3篇
- 有關《小河與青草》教學設計的教案
- 2024年度專業(yè)推土機租賃及運輸服務合同3篇
- 有關光電檢測課程設計
- 燃燒和爆炸教學課程設計
- 2024年智能溫室育苗技術研發(fā)與應用合同3篇
- 感恩節(jié)教育學生精彩講話稿范文(8篇)
- 2019-2020學年四川省南充市九年級(上)期末數(shù)學試卷
- 膽石癥教案完
- DIN-EN-ISO-2409-CN國際標準文檔
- 公務員面試輔導(共75張PPT)
- 老化測試記錄表
- 金屬齒形墊片安全操作規(guī)定
- 涂料安全生產操作規(guī)程
- 新設備、工裝、量具和試驗設備清單
- 區(qū)塊鏈技術與應用學習通課后章節(jié)答案期末考試題庫2023年
- 小學年級綜合實踐活動少代會
- 拍賣行業(yè)務管理制度拍賣行管理制度
評論
0/150
提交評論