廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題含解析_第1頁
廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題含解析_第2頁
廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題含解析_第3頁
廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題含解析_第4頁
廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省東莞市智升校2021-2022學年中考數(shù)學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.2.如圖,內(nèi)接于,若,則A. B. C. D.3.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+124.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.5.某班為獎勵在學校運動會上取得好成績的同學,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.6.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°7.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結(jié)論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數(shù)為29.4分C.該班學生這次考試成績的眾數(shù)為30分D.該班學生這次考試成績的中位數(shù)為28分8.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣29.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°10.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.807211.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.12.下列選項中,能使關(guān)于x的一元二次方程ax2﹣4x+c=0一定有實數(shù)根的是()A.a(chǎn)>0 B.a(chǎn)=0 C.c>0 D.c=0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________14.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.15.對于一元二次方程,根的判別式中的表示的數(shù)是__________.16.等腰梯形是__________對稱圖形.17.已知x+y=8,xy=2,則x2y+xy2=_____.18.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù):,,)20.(6分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.21.(6分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關(guān)聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,求n的取值范圍.22.(8分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關(guān)信息,求出“石鼓閣”的高AB的長度.23.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.24.(10分)商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設每件商品降價x元.據(jù)此規(guī)律,請回答:(1)商場日銷售量增加▲件,每件商品盈利▲元(用含x的代數(shù)式表示);(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?25.(10分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.26.(12分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.27.(12分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

∵A(,),B(2,)兩點在雙曲線上,∴根據(jù)點在曲線上,點的坐標滿足方程的關(guān)系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!2、B【解析】

根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.3、D【解析】

根據(jù)等式的性質(zhì)2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.【點睛】本題考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數(shù)時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.4、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關(guān)鍵是熟知概率的計算公式.5、A【解析】

根據(jù)題意設未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.6、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補,此題難度不大.7、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數(shù)為30分,故D錯誤;8、A【解析】

有理數(shù)大小比較的法則:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點睛】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小9、B【解析】

先根據(jù)圖中是三個等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【詳解】∵圖中是三個等邊三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故選B.【點睛】考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關(guān)鍵.10、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應注意各個頂點重復了一次.如當n=2時,共有S2=4×2﹣4=4;當n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.11、A【解析】

應明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最??;故選A.【點睛】此題考負數(shù)的大小比較,應理解數(shù)字大的負數(shù)反而?。?2、D【解析】試題分析:根據(jù)題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(答案不唯一)【解析】

根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下a<0,與y軸交點的縱坐標即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達式中,a<0,c=1,∴二次函數(shù)表達式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質(zhì),掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關(guān)系是解題的關(guān)鍵.14、3【解析】

如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質(zhì)、三角形的中位線定理、菱形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.15、-5【解析】

分清一元二次方程中,二次項系數(shù)、一次項系數(shù)和常數(shù)項,直接解答即可.【詳解】解:表示一元二次方程的一次項系數(shù).【點睛】此題考查根的判別式,在解一元二次方程時程根的判別式△=b2-4ac,不要盲目套用,要看具體方程中的a,b,c的值.a(chǎn)代表二次項系數(shù),b代表一次項系數(shù),c是常數(shù)項.16、軸【解析】

根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.17、1【解析】

將所求式子提取xy分解因式后,把x+y與xy的值代入計算,即可得到所求式子的值.【詳解】∵x+y=8,xy=2,

∴x2y+xy2=xy(x+y)=2×8=1.

故答案為:1.【點睛】本題考查的知識點是因式分解的應用,解題關(guān)鍵是將所求式子分解因式.18、1【解析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AB≈1395米;(2)沒有超速.【解析】

(1)先根據(jù)tan∠ADC=2求出AC,再根據(jù)∠ABC=35°結(jié)合正弦值求解即可(2)根據(jù)速度的計算公式求解即可.【詳解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴該車的速度==55.8km/h<60千米/時,故沒有超速.【點睛】此題重點考察學生對三角函數(shù)值的實際應用,熟練掌握三角函數(shù)值的實際應用是解題的關(guān)鍵.20、(1)見解析;(2)+【解析】

(1)利用題中的邊的關(guān)系可求出△OAC是正三角形,然后利用角邊關(guān)系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質(zhì)就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【點睛】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質(zhì)以及圓周角定理、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關(guān)聯(lián)點”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識,解題的關(guān)鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.22、“石鼓閣”的高AB的長度為56m.【解析】

根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質(zhì)可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計算即可得出結(jié)論.【詳解】由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,聯(lián)立①②,解得:AB=56,答:“石鼓閣”的高AB的長度為56m.【點睛】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).23、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標,用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應,則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.24、(1)2x50-x(2)每件商品降價20元,商場日盈利可達2100元.【解析】

(1)2x50-x.(2)解:由題意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵該商場為盡快減少庫存,降價越多越吸引顧客.∴x=20.答:每件商品降價20元,商場日盈利可達2100元.25、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.26、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論