2024年初中幾何知識點(diǎn)總結(jié)歸納_第1頁
2024年初中幾何知識點(diǎn)總結(jié)歸納_第2頁
2024年初中幾何知識點(diǎn)總結(jié)歸納_第3頁
2024年初中幾何知識點(diǎn)總結(jié)歸納_第4頁
2024年初中幾何知識點(diǎn)總結(jié)歸納_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年初中幾何知識點(diǎn)總結(jié)歸納

初中幾何知識點(diǎn)總結(jié)歸納1

1過兩點(diǎn)有且只有一條直線

2兩點(diǎn)之間線段最短

3同角或等角的補(bǔ)角相等

4同角或等角的余角相等

5過一點(diǎn)有且只有一條直線和已知直線垂直

6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9同位角相等,兩直線平行

10內(nèi)錯(cuò)角相等,兩直線平行

11同旁內(nèi)角互補(bǔ),兩直線平行

12兩直線平行,同位角相等

13兩直線平行,內(nèi)錯(cuò)角相等

14兩直線平行,同旁內(nèi)角互補(bǔ)

15定理三角形兩邊的和大于第三邊

16推論三角形兩邊的差小于第三邊

17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180

18推論1直角三角形的兩個(gè)銳角互余

19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21全等三角形的對應(yīng)邊、對應(yīng)角相等

22邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

23角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

24推論有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理有三邊對應(yīng)相

等的兩個(gè)三角形全等

26斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等

31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32等腰三角形的頂角平分線、底邊上的中線和高互相重合

33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于6034等腰三角形的判定定理如

果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

35推論1三個(gè)角都相等的三角形是等邊三角形

36推論2有一個(gè)角等于60的等腰三角形是等邊三角形

37在直角三角形中,如果一個(gè)銳角等于30那么它所對的直角邊等于斜邊的一半

38直角三角形斜邊上的中線等于斜邊上的一半

39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱

軸上

45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直

線對稱

46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c

47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個(gè)三角形是直

角三角形

48定理四邊形的內(nèi)角和等于360

49四邊形的外角和等于360

50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n—2)180

51推論任意多邊的外角和等于360

52平行四邊形性質(zhì)定理1平行四邊形的對角相等

53平行四邊形性質(zhì)定理2平行四邊形的對邊相等

54推論夾在兩條平行線間的平行線段相等

55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60矩形性質(zhì)定理1矩形的四個(gè)角都是直角

61矩形性質(zhì)定理2矩形的對角線相等

62矩形判定定理1有三個(gè)角是直角的四邊形是矩形

63矩形判定定理2對角線相等的平行四邊形是矩形

64菱形性質(zhì)定理1菱形的四條邊都相等

65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即S=(ab)2

67菱形判定定理1四邊都相等的四邊形是菱形

68菱形判定定理2對角線互相垂直的平行四邊形是菱形

69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組

對角

71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形

關(guān)于這一點(diǎn)對稱

74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上

截得的線段也相等

79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh

83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d

85(3)等比性質(zhì)如果a/b=c/d=...=m/n(b+d+...+nO),那么

(a+c+...+m)/(b+d+...+n)=a/b

86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這

條直線平行于三角形的第三邊

89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形

三邊對應(yīng)成比例

90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與

原三角形相似

91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)

92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊

對應(yīng)成比例,那么這兩個(gè)直角三角形相似

96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

97性質(zhì)定理2相似三角形周長的比等于相似比

98性質(zhì)定理3相似三角形面積的比等于相似比的平方

99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

104同圓或等圓的半徑相等

105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109定理不在同一直線上的三個(gè)點(diǎn)確定一條直線

110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

112推論2圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距

相等

115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相

等那么它們所對應(yīng)的其余各組量都相等

116定理一條弧所對的圓周角等于它所對的圓心角的一半

117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118推論2半圓(或直徑)所對的圓周角是直角;9。的圓周角所對的弦是直徑

119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

121①直線L和。。相交d<r

②直線L和。O相切d=r

③直線L和。O相離d>r

122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分

兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理弦切角等于它所夾的弧對的圓周角

129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

132切割線定理從圓外一點(diǎn)引圓的切線和割線切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長

的比例中項(xiàng)

133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

135①兩圓外離d>R+r②兩圓外切d=R+r

③兩圓相交R—r<d<R+r(R>r)

④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

136定理相交兩圓的連心線垂直平分兩圓的公共弦

137定理把圓分成n(n3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

139正n邊形的每個(gè)內(nèi)角都等于(n—2)180/n

140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

142正三角形面積3a/4a表示邊長

143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360,因此k(n—2)

180/n=360化為(n—2)(k—2)=4

144弧長計(jì)算公式:L=nR/180

145扇形面積公式:S扇形=nR/360=LR/2

146內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

初中幾何知識點(diǎn)總結(jié)歸納2

什么是幾何圖形:

點(diǎn)、線、面、體這些可幫助人們有效的刻畫錯(cuò)綜復(fù)雜的世界,它們都稱為幾何圖現(xiàn)geometric

figure)

幾何圖形一般分為立體圖形(solidfigure)和平面圖形(planefigure)。

我們所熟悉的幾何圖形:

正方形

a——邊長C=4aS=a2

長方形

a和b-----邊長C=2(a+b)S=ab

三角形

a,b,c——三邊長h--a邊上的高s-——周長的一半A,B,C——-內(nèi)角

其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]l/2=a2sinBsinC/(2sinA)

四邊形

d,D--一對角線長一一對角線夾角S=dD/2sin

平行四邊形

a,b------邊長h------a邊的高---兩邊夾角S=ah=absin

菱形

a--—邊長一一-夾角D--—長對角線長d--一短對角線長S=Dd/2=a2sin

梯形

a和b------上、下底長h------高m-----中位線長S=(a+b)h/2=mh

r——半徑d——直徑C=d=2rS=r2=d2/4

扇形

r一—扇形半徑a-一—圓心角度數(shù)C=2r+2(a/360)S=r2(a/360)

弓形

I-——弧長b---弦長h-——矢高r——-半徑—圓心角的度數(shù)

S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)l/2=r2/360-b/2[r2-(b/2)2]l/2=

r(l-b)/2+bh/22bh/3

圓環(huán)

R——外圓半徑r——內(nèi)圓半徑D——外圓直徑d——內(nèi)圓直徑S=(R2-⑵=(D2-d2)/4

初中幾何知識點(diǎn)總結(jié)歸納3

A、圖形的認(rèn)識

1、點(diǎn),線,面

點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)

成線,線動(dòng)成面,面動(dòng)成體。

展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,

棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是

底面圖形有N條邊的棱柱。

截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割

成若干個(gè)扇形。

2、角

線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。

③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。④經(jīng)過兩點(diǎn)有且只有一條直線。

比較長短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間

的距離。

角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂

點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。

角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端

點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),

所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線

叫做這個(gè)角的平分線。

平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點(diǎn),有且只有一條直

線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交

點(diǎn)叫做垂足。③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有

關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于

畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

垂直平分線定理:

性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上

角平分線:把一個(gè)角平分的射線叫該角的角平分線。

定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的'角平分線是一條射線,不是線段也不是直線,

很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對稱軸才會(huì)用直線的,這也涉及到軌跡的問題,

一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)

性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上

正方形:一組鄰邊相等的矩形是正方形

性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

判定:

1、對角線相等的菱形

2、鄰邊相等的矩形

3、相交線與平行線

角:①如果兩個(gè)角的和是直角,那么稱和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱

這兩個(gè)角互為補(bǔ)角。②同角或等角的余角/補(bǔ)角相等。③對頂角相等。④同位角相等/內(nèi)錯(cuò)角相等

/同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然。

4、三角形

三角形:①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。②三角形

任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。③三角形三個(gè)內(nèi)角的和等于180

度。④三角形分銳角三角形/直角三角形/鈍角三角形。⑤直角三角形的兩個(gè)銳角互余。⑥三角形

中一個(gè)內(nèi)角的角平分線與他的對邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。

⑦三角形中,連接一個(gè)頂點(diǎn)與他對邊中點(diǎn)的線段叫做這個(gè)三角形的中線。⑧三角形的三條角平分

線交于一點(diǎn),三條中線交于一點(diǎn)。⑨從三角形的一個(gè)頂點(diǎn)向他的對邊所在的直線作垂線,頂點(diǎn)和

垂足之間的線段叫做三角形的高。⑩三角形的三條高所在的直線交于一點(diǎn)。

圖形的全等:全等圖形的形狀和大小都相同。兩個(gè)能夠重合的圖形叫全等圖形。

全等三角形:①全等三角形的對應(yīng)邊/角相等。

②條件:SSS、AAS、ASA、SAS、HLO

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。

5、四邊形

平行四邊形的性質(zhì):①兩組對邊分別平行的四邊形叫做平行四邊形。②平行四邊形不相鄰的

兩個(gè)頂點(diǎn)連成的線段叫他的對角線。③平行四邊形的對邊/對角相等。④平行四邊形的對角線互

相平分。

平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩

組對邊分別相等的四邊形/定義。

菱形:①一組鄰邊相等的平行四邊形是菱形。②領(lǐng)心的四條邊相等,兩條對角線互相垂直平

分,每一組對角線平分一組對角。③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相

等的四邊形。

矩形與正方形:①有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。②矩形的對角線相等,四個(gè)角

都是直角。③對角線相等的平行四邊形是矩形。④正方形具有平行四邊形,矩形,菱形的一切性

質(zhì)。⑤一組鄰邊相等的矩形是正方形。

梯形:①一組對邊平行而另一組對邊不平行的四邊形叫梯形。②兩條腰相等的梯形叫等腰梯

形。③一條腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的兩個(gè)內(nèi)角相等,對角線星等,

反之亦然。

多邊形:①N邊形的內(nèi)角和等于(N-2)180度。②多邊心內(nèi)角的一邊與另一邊的反向延長

線所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這

個(gè)多邊形的內(nèi)角和(都等于360度)

平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。

中心對稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重

合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做他的對稱中心。②中心對稱圖形上的每一對對

應(yīng)點(diǎn)所連成的線段都被對稱中心平分。

B、圖形與變換:

1、圖形的軸對稱

軸對稱:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫

做軸對稱圖形,這條直線叫做對稱軸。

軸對稱圖形:①角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。②線段垂直平分線上的點(diǎn)到

這條線段兩個(gè)端點(diǎn)的距離相等。③等腰三角形的“三線合一"。

軸對稱的性質(zhì):對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分,對應(yīng)線段/對應(yīng)角相等。

2、圖形的平移和旋轉(zhuǎn)

平移:①在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

②經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。

旋轉(zhuǎn):①在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做

旋轉(zhuǎn)。②經(jīng)過旋轉(zhuǎn),圖形商店每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對對

應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

3、圖形的相似

比:①,那么,反之亦然。,那么

A/B=C/DAD=BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論