版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年浙江省杭州市五校聯(lián)考高一數(shù)學(xué)第二學(xué)期期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.從裝有2個(gè)白球和2個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對(duì)立的事件是A.至少有一個(gè)黑球與都是黑球 B.至少有一個(gè)黑球與至少有一個(gè)白球C.恰好有一個(gè)黑球與恰好有兩個(gè)黑球 D.至少有一個(gè)黑球與都是白球2.在銳角中,內(nèi)角,,的對(duì)邊分別為,,,,,成等差數(shù)列,,則的周長(zhǎng)的取值范圍為()A. B. C. D.3.圓與圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.相離4.已知直線經(jīng)過(guò)點(diǎn),且傾斜角為,則直線的方程為()A. B.C. D.5.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若,則△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形6.已知數(shù)列滿足若,則數(shù)列的第2018項(xiàng)為()A. B. C. D.7.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm8.已知兩點(diǎn),,若直線與線段相交,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.若,則與夾角的余弦值為()A. B. C. D.110.若不等式的解集是,則的值為()A.12 B. C. D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則________.12.函數(shù)的最大值為,最小值為,則的最小正周期為_(kāi)_____.13.等差數(shù)列的前項(xiàng)和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前15項(xiàng)和.14.已知向量,,且,則的值為_(kāi)_______.15.已知實(shí)數(shù),是與的等比中項(xiàng),則的最小值是______.16.已知數(shù)列中,,,則數(shù)列通項(xiàng)___________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.18.中,角A,B,C所對(duì)邊分別是a、b、c,且.(1)求的值;(2)若,求面積的最大值.19.如圖,在四棱錐中,底面是矩形,底面,是的中點(diǎn),已知,,,求:(1)直線與平面所成角的正切值;(2)三棱錐的體積.20.已知向量,.(1)求的坐標(biāo);(2)求.21.已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點(diǎn)的坐標(biāo);(2)求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對(duì)立事件的定義,依次驗(yàn)證即可【詳解】對(duì)于A:事件:“至少有一個(gè)黑球”與事件:“都是黑球”可以同時(shí)發(fā)生,如:兩個(gè)都是黑球,∴這兩個(gè)事件不是互斥事件,∴A不正確對(duì)于B:事件:“至少有一個(gè)黑球”與事件:“至少有一個(gè)白球”可以同時(shí)發(fā)生,如:一個(gè)白球一個(gè)黑球,∴B不正確對(duì)于C:事件:“恰好有一個(gè)黑球”與事件:“恰有兩個(gè)黑球”不能同時(shí)發(fā)生,但從口袋中任取兩個(gè)球時(shí)還有可能是兩個(gè)都是白球,∴兩個(gè)事件是互斥事件但不是對(duì)立事件,∴C正確對(duì)于D:事件:“至少有一個(gè)黑球”與“都是白球”不能同時(shí)發(fā)生,但一定會(huì)有一個(gè)發(fā)生,∴這兩個(gè)事件是對(duì)立事件,∴D不正確故選C.【點(diǎn)睛】本題考查互斥事件與對(duì)立事件.首先要求理解互斥事件和對(duì)立事件的定義,理解互斥事件與對(duì)立事件的聯(lián)系與區(qū)別.同時(shí)要能夠準(zhǔn)確列舉某一事件所包含的基本事件.屬簡(jiǎn)單題2、A【解析】
依題意求出,由正弦定理可得,再根據(jù)角的范圍,可求出的范圍,即可求得的周長(zhǎng)的取值范圍.【詳解】依題可知,,由,可得,所以,即,而.∴,即.故的周長(zhǎng)的取值范圍為.故選:A.【點(diǎn)睛】本題主要考查正弦定理在解三角形中的應(yīng)用,兩角和與差的正弦公式的應(yīng)用,以及三角函數(shù)的值域求法的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.3、B【解析】
由兩圓的圓心距及半徑的關(guān)系求解即可得解.【詳解】解:由圓,圓,即,所以圓的圓心坐標(biāo)為,圓的圓心坐標(biāo)為,兩圓半徑,則圓心距,即兩圓外切,故選:B.【點(diǎn)睛】本題考查了兩圓的位置關(guān)系的判斷,屬基礎(chǔ)題.4、C【解析】
根據(jù)傾斜角求得斜率,再根據(jù)點(diǎn)斜式寫(xiě)出直線方程,然后化為一般式.【詳解】?jī)A斜角為,斜率為,由點(diǎn)斜式得,即.故選C.【點(diǎn)睛】本小題主要考查傾斜角與斜率對(duì)應(yīng)關(guān)系,考查直線的點(diǎn)斜式方程和一般式方程,屬于基礎(chǔ)題.5、A【解析】
由正弦定理,記,則,,,又,所以,即,所以.故選:A.6、A【解析】
利用數(shù)列遞推式求出前幾項(xiàng),可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點(diǎn)睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.7、B【解析】
先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【點(diǎn)睛】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
找出直線與PQ相交的兩種臨界情況,求斜率即可.【詳解】因?yàn)橹本€恒過(guò)定點(diǎn),根據(jù)題意,作圖如下:直線與線段PQ相交的臨界情況分別為直線MP和直線MQ,已知,,由圖可知:當(dāng)直線繞著點(diǎn)M向軸旋轉(zhuǎn)時(shí),其斜率范圍為:;當(dāng)直線與軸重合時(shí),沒(méi)有斜率;當(dāng)直線繞著點(diǎn)M從軸至MP旋轉(zhuǎn)時(shí),其斜率范圍為:綜上所述:,故選:D.【點(diǎn)睛】本題考查直線斜率的計(jì)算,直線斜率與傾斜角的關(guān)系,屬基礎(chǔ)題.9、A【解析】
根據(jù)向量的夾角公式,準(zhǔn)確運(yùn)算,即可求解,得到答案.【詳解】由向量,則與夾角的余弦值為,故選A.【點(diǎn)睛】本題主要考查了向量的夾角公式的應(yīng)用,其中解答中熟記向量的夾角公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】
將不等式解集轉(zhuǎn)化為對(duì)應(yīng)方程的根,然后根據(jù)韋達(dá)定理求出方程中的參數(shù),從而求出所求.【詳解】解:不等式的解集為,為方程的兩個(gè)根,根據(jù)韋達(dá)定理:解得,故選:B?!军c(diǎn)睛】本題主要考查了一元二次不等式的應(yīng)用,以及韋達(dá)定理的運(yùn)用和一元二次不等式解集與所對(duì)應(yīng)一元二次方程根的關(guān)系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)奇偶性,先計(jì)算,再計(jì)算【詳解】因?yàn)槭嵌x在上的奇函數(shù),所以.因?yàn)楫?dāng)時(shí),所以.故答案為【點(diǎn)睛】本題考查了奇函數(shù)的性質(zhì),屬于??碱}型.12、【解析】
先換元,令,所以,利用一次函數(shù)的單調(diào)性,列出等式,求出,然后利用正切型函數(shù)的周期公式求出即可.【詳解】令,所以,由于,所以在上單調(diào)遞減,即有,解得,,故最小正周期為.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,正切型函數(shù)周期公式的應(yīng)用,以及換元法的應(yīng)用.13、(1),;(2)125.【解析】
(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項(xiàng)為正,后面為負(fù),再計(jì)算數(shù)列的前15項(xiàng)和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,絕對(duì)值和,判斷數(shù)列的正負(fù)分界處是解題的關(guān)鍵.14、【解析】
利用共線向量的坐標(biāo)表示求出的值,可計(jì)算出向量的坐標(biāo),然后利用向量的模長(zhǎng)公式可求出的值.【詳解】,,且,,解得,,則,因此,,故答案為:.【點(diǎn)睛】本題考查利用共線向量的坐標(biāo)表示求參數(shù),同時(shí)也考查了向量模的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
通過(guò)是與的等比中項(xiàng)得到,利用均值不等式求得最小值.【詳解】實(shí)數(shù)是與的等比中項(xiàng),,解得.則,當(dāng)且僅當(dāng)時(shí),即時(shí)取等號(hào).故答案為:.【點(diǎn)睛】本題考查了等比中項(xiàng),均值不等式,1的代換是解題的關(guān)鍵.16、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項(xiàng)公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項(xiàng),以為公差的等差數(shù)列,∴,∴.故答案為.點(diǎn)睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式外,還有一種常用方法:對(duì)遞推式化簡(jiǎn)變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項(xiàng)公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】
(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計(jì)算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點(diǎn)睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時(shí)要利用三角恒等變換思想將三角函數(shù)的解析式化簡(jiǎn),利用正弦、余弦函數(shù)的性質(zhì)求解,考查運(yùn)算求解能力,屬于中等題.18、(1);(2)【解析】
(1)將化簡(jiǎn)代入數(shù)據(jù)得到答案.(2)利用余弦定理和均值不等式計(jì)算,代入面積公式得到答案.【詳解】;(2)由,可得,由余弦定理可得,即有,當(dāng)且僅當(dāng),取得等號(hào).則面積為.即有時(shí),的面積取得最大值.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,面積公式,均值不等式,屬于??碱}型.19、(1);(2)【解析】
(1)要求直線與平面所成角的正切值,先要找到直線在平面上的射影,即在直線上找一點(diǎn)作平面的垂線,結(jié)合已知與圖形,轉(zhuǎn)化為證明平面再求解;(2)三棱錐的體積計(jì)算在于選取合適的底和高,此題以為底,與的中點(diǎn)的連線為高計(jì)算更為快速,從而轉(zhuǎn)化為證明平面再求解.【詳解】(1)平面,平面又,,平面,平面所以平面,所以為直線與平面所成角。易證是一個(gè)直角三角形,所以.(2)如圖,設(shè)的中點(diǎn)為,則,平面,平面,又,,,又,,,所以平面,所以為三棱錐的高.因此可求【點(diǎn)睛】本題主要考察線面角與三棱錐體積的計(jì)算.線面角的關(guān)鍵在于找出直線在平面上的射影,一般轉(zhuǎn)化為直線與平面的垂直;三棱錐體積的計(jì)算主要在于選擇合適的底和高.20、(1);(2).【解析】
(1)根據(jù)向量的數(shù)乘運(yùn)算及加法運(yùn)算即可得到本題答案;(2)根據(jù)向量的模的計(jì)算公式即可得到本題答案.【詳解】(1)因?yàn)?,所以;所以;(2)因?yàn)?所以.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算以及模的計(jì)算,屬基礎(chǔ)題.21、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點(diǎn)斜式可得的方程,與所在直線方程聯(lián)立即可得結(jié)果;(2)設(shè)則,代入中,可求得點(diǎn)坐標(biāo),利用
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)數(shù)學(xué)課程設(shè)計(jì)工作總結(jié)
- 體育場(chǎng)館智能化升級(jí)改造項(xiàng)目協(xié)議
- 酒店管理軟件定制開(kāi)發(fā)服務(wù)協(xié)議
- 體育賽事策劃與運(yùn)營(yíng)投資協(xié)議
- 產(chǎn)品設(shè)計(jì)及研發(fā)流程優(yōu)化協(xié)議
- 采購(gòu)委托代理合同
- 教育軟件產(chǎn)品開(kāi)發(fā)授權(quán)協(xié)議
- 2025年水泥排水管購(gòu)銷(xiāo)合同范本
- 貨架購(gòu)買(mǎi)合同(2025年)
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)土地拍賣(mài)合同模板3篇
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)項(xiàng)目安全文明施工方案
- 2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)北師大版4.6《挖紅薯》(教學(xué)設(shè)計(jì))
- 糖尿病患者體重管理專家共識(shí)(2024年版)解讀
- 中國(guó)融通集團(tuán)招聘筆試題庫(kù)2024
- 2023年國(guó)家衛(wèi)生健康委項(xiàng)目資金監(jiān)管服務(wù)中心招聘考試試題及答案
- 期末檢測(cè)試卷(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)青島版
- 2023-2024學(xué)年北京市海淀區(qū)八年級(jí)上學(xué)期期末考試物理試卷含詳解
- 新人教版七年級(jí)上冊(cè)初中數(shù)學(xué)全冊(cè)教材習(xí)題課件
- 摔箱測(cè)試報(bào)告
- 四川省遂寧市城區(qū)遂寧市市城區(qū)初中2024年第一學(xué)期期末教學(xué)水平監(jiān)測(cè)七年級(jí)歷史試題(無(wú)答案)
- 建筑垃圾清運(yùn)投標(biāo)方案(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論