版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省各地高一下數(shù)學(xué)期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,為正方體,下面結(jié)論錯誤的是()A.異面直線與所成的角為45° B.平面C.平面平面 D.異面直線與所成的角為45°2.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)3.已知向量,,則,的夾角為()A. B. C. D.4.已知是圓的一條弦,,則()A. B. C. D.與圓的半徑有關(guān)5.過點的圓的切線方程是()A. B.或C.或 D.或6.已知組數(shù)據(jù),,…,的平均數(shù)為2,方差為5,則數(shù)據(jù)2+1,2+1,…,2+1的平均數(shù)與方差分別為()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=217.在中,角,,所對的邊分別為,,,若,則的值為()A. B. C. D.8.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.9.設(shè)滿足約束條件,則的最大值為()A.7 B.6 C.5 D.310.如果數(shù)據(jù)的平均數(shù)為,方差為,則的平均數(shù)和方差分別為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程在區(qū)間上的解為___________.12.若函數(shù),則__________.13.若是方程的解,其中,則________.14.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.15.函數(shù)在的值域是______________.16.計算:________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖四邊形ABCD為菱形,G為AC與BD交點,BE⊥平面(I)證明:平面AEC⊥平面BED;(II)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為18.如圖所示,函數(shù)的圖象與軸交于點,且該函數(shù)的最小正周期為.(1)求和的值;(2)已知點,點是該函數(shù)圖象上一點,點是的中點,當(dāng)時,求的值.19.已知公差的等差數(shù)列的前項和為,且滿足,.(1)求數(shù)列的通項公式;(2)求證:是數(shù)列中的項;(3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,,為遞增的等比數(shù)列,求的值所構(gòu)成的集合.20.如圖,在四棱錐中,底面是菱形,底面.(Ⅰ)證明:;(Ⅱ)若,求二面角的余弦值.21.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)正方體性質(zhì),依次證明線面平行和面面平行,根據(jù)直線的平行關(guān)系求異面直線的夾角.【詳解】根據(jù)正方體性質(zhì),,所以異面直線與所成的角等于,,,所以不等于45°,所以A選項說法不正確;,四邊形為平行四邊形,,平面,平面,所以平面,所以B選項說法正確;同理可證:平面,是平面內(nèi)兩條相交直線,所以平面平面,所以C選項說法正確;,異面直線與所成的角等于,所以D選項說法正確.故選:A【點睛】此題考查線面平行和面面平行的判定,根據(jù)平行關(guān)系求異面直線的夾角,考查空間線線平行和線面平行關(guān)系的掌握2、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.3、A【解析】
由題意得,即可得,再結(jié)合即可得解.【詳解】由題意知,則.,則,的夾角為.故選:A.【點睛】本題考查了向量數(shù)量積的應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
由數(shù)量積的幾何意義,利用外心的幾何特征計算即可得解.【詳解】是圓的一條弦,易知在方向上的投影恰好為,所以=||||==2.故選C.【點睛】本題考查了數(shù)量積的運算,利用定義求解要確定模長及夾角,屬于基礎(chǔ)題.5、D【解析】
先由題意得到圓的圓心坐標(biāo),與半徑,設(shè)所求直線方程為,根據(jù)直線與圓相切,結(jié)合點到直線距離公式,即可求出結(jié)果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設(shè)過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結(jié)合點到直線距離公式即可求解,屬于??碱}型.6、C【解析】
根據(jù)題意,利用數(shù)據(jù)的平均數(shù)和方差的性質(zhì)分析可得答案.【詳解】根據(jù)題意,數(shù)據(jù),,,的平均數(shù)為2,方差為5,則數(shù)據(jù),,,的平均數(shù),其方差;故選.【點睛】本題考查數(shù)據(jù)的平均數(shù)、方差的計算,關(guān)鍵是掌握數(shù)據(jù)的平均數(shù)、方差的計算公式,屬于基礎(chǔ)題.7、B【解析】
化簡式子得到,利用正弦定理余弦定理原式等于,代入數(shù)據(jù)得到答案.【詳解】利用正弦定理和余弦定理得到:故選B【點睛】本題考查了正弦定理,余弦定理,三角恒等變換,意在考查學(xué)生的計算能力.8、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.9、A【解析】
考點:簡單線性規(guī)劃.專題:計算題.分析:首先作出可行域,再作出直線l0:y=-3x,將l0平移與可行域有公共點,直線y=-3x+z在y軸上的截距最大時,z有最大值,求出此時直線y=-3x+z經(jīng)過的可行域內(nèi)的點A的坐標(biāo),代入z=3x+y中即可.解:如圖,作出可行域,作出直線l0:y=-3x,將l0平移至過點A(3,-2)處時,函數(shù)z=3x+y有最大值1.故選A.點評:本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合思想.解答的步驟是有兩種方法:一種是:畫出可行域畫法,標(biāo)明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個角點的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗證,求出最優(yōu)解.10、D【解析】
根據(jù)平均數(shù)和方差的公式,可推導(dǎo)出,,,的平均數(shù)和方差.【詳解】因為,所以,所以的平均數(shù)為;因為,所以,故選:D.【點睛】本題考查平均數(shù)與方差的公式計算,考查對概念的理解與應(yīng)用,考查基本運算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.12、【解析】
根據(jù)分段函數(shù)的解析式先求,再求即可.【詳解】因為,所以.【點睛】本題主要考查了分段函數(shù)求值問題,解題的關(guān)鍵是將自變量代入相應(yīng)范圍的解析式中,屬于基礎(chǔ)題.13、或【解析】
將代入方程,化簡結(jié)合余弦函數(shù)的性質(zhì)即可求解.【詳解】由題意可得:,即所以或又所以或故答案為:或【點睛】本題主要考查了三角函數(shù)求值問題,屬于基礎(chǔ)題.14、【解析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎(chǔ)題.15、【解析】
利用,即可得出.【詳解】解:由已知,,又
,
故答案為:.【點睛】本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.16、【解析】
用正弦、正切的誘導(dǎo)公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導(dǎo)公式,考查了特殊角的正弦值和正切值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)3+25【解析】試題分析:(Ⅰ)由四邊形ABCD為菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由線面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)設(shè)AB=x,通過解直角三角形將AG、GC、GB、GD用x表示出來,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根據(jù)條件三棱錐E-ACD的體積為63求出x,即可求出三棱錐E-ACD試題解析:(Ⅰ)因為四邊形ABCD為菱形,所以AC⊥BD,因為BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC?平面AEC,所以平面AEC⊥平面BED(Ⅱ)設(shè)AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因為AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG為直角三角形,可得BE=22由已知得,三棱錐E-ACD的體積VE-ACD=1從而可得AE=EC=ED=6.所以ΔEAC的面積為3,ΔEAD的面積與ΔECD的面積均為5.故三棱錐E-ACD的側(cè)面積為3+考點:線面垂直的判定與性質(zhì);面面垂直的判定;三棱錐的體積與表面積的計算;邏輯推理能力;運算求解能力18、(1)..(2),或.【解析】試題分析:(1)由三角函數(shù)圖象與軸交于點可得,則.由最小正周期公式可得.(2)由題意結(jié)合中點坐標(biāo)公式可得點的坐標(biāo)為.代入三角函數(shù)式可得,結(jié)合角的范圍求解三角方程可得,或.試題解析:(1)將代入函數(shù)中,得,因為,所以.由已知,且,得.(2)因為點是的中點,,所以點的坐標(biāo)為.又因為點在的圖象上,且,所以,且,從而得,或,即,或.19、(1);(2)證明見解析;(3)見解析【解析】
(1)根據(jù)等差數(shù)列性質(zhì),結(jié)合求得等再求的通項公式.
(2)先求出,再證明滿足的通項公式.
(3)由數(shù)列,,為遞增的等比數(shù)列可得,從而根據(jù)的通項公式求的值所構(gòu)成的集合.【詳解】(1)因為為等差數(shù)列,故,故或,又公差,所以,故,故.
(2)由可得,故,若是數(shù)列中的項,則即,即,故是數(shù)列中的項;(3)由數(shù)列,,為遞增的等比數(shù)列,則即.由題意存在正整數(shù)使得等式成立,因為,故能被5整除,設(shè),則,又為整數(shù),故為整數(shù)設(shè),即,故,解得,又,故,不妨設(shè),則.即又當(dāng)時,由得滿足條件.綜上所述,.【點睛】(1)本題考查等差數(shù)列性質(zhì):若是等差數(shù)列,且,則(2)證明數(shù)列中是否滿足某項或者存在正整數(shù)使得某三項為等比數(shù)列時,均先根據(jù)條件列出對應(yīng)的表達式,再利用正整數(shù)的性質(zhì)進行判斷,有一定的難度.20、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)由底面推出,由菱形的性質(zhì)推出,即可推出平面從而得到;(Ⅱ)作,交的延長線于,連接,則二面角的平面角是,由已知條件求出AD,進而求出AE、PD,即可求得.【詳解】(Ⅰ)證明:連接,∵底面,底面,∴.∵四邊形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延長線于,連接.由于,于是平面,平面,,所以二面角的平面角是.設(shè)“”,且底面是菱形,,,,∴.【點睛】本題考查線面垂直、線線垂直的證明,二面角的余弦值,屬于中檔題.21、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度體育賽事組織書面合同訂立與贊助商權(quán)益
- 制作基礎(chǔ)知識
- 工程成本管理流程
- 2025農(nóng)業(yè)種植買賣合同協(xié)議
- 軟件系統(tǒng)年度維護服務(wù)合同書
- 國慶女裝店活動方案
- 電臺酒店合作協(xié)議
- 巴厘島雙十一活動策劃書
- 2025電子標(biāo)簽項目合同
- 2025土地證抵押借款合同
- 2024家清產(chǎn)業(yè)帶趨勢洞察
- 人教版小學(xué)數(shù)學(xué)五年級上冊口算心算天天練 全冊
- 青島版(五年制)四年級下冊小學(xué)數(shù)學(xué)全冊導(dǎo)學(xué)案(學(xué)前預(yù)習(xí)單)
- 退學(xué)費和解協(xié)議書模板
- 2024至2030年中國對氯甲苯行業(yè)市場全景調(diào)研及發(fā)展趨勢分析報告
- 智能教育輔助系統(tǒng)運營服務(wù)合同
- 心功能分級及護理
- DLT 572-2021 電力變壓器運行規(guī)程
- 重慶育才中學(xué)2025屆化學(xué)九上期末教學(xué)質(zhì)量檢測試題含解析
- 成都市2022級(2025屆)高中畢業(yè)班摸底測試(零診)數(shù)學(xué)試卷(含答案)
- 【云南省中藥材出口現(xiàn)狀、問題及對策11000字(論文)】
評論
0/150
提交評論