版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省文山州五中2023-2024學年數(shù)學高一下期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,若,則下列結(jié)論錯誤的是()A.當時,是直角三角形 B.當時,是銳角三角形C.當時,是鈍角三角形 D.當時,是鈍角三角形2.設(shè)向量,且,則實數(shù)的值為()A. B. C. D.3.一個鐘表的分針長為,經(jīng)過分鐘,分針掃過圖形的面積是()A. B. C. D.4.下列關(guān)于函數(shù)()的敘述,正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.值域為C.圖像關(guān)于點中心對稱D.不等式的解集為5.如圖,平行四邊形的對角線相交于點,是的中點,的延長線與相交于點,若,,,則()A. B. C. D.6.在△ABC中,c=,A=75°,B=45°,則△ABC的外接圓面積為A. B.π C.2π D.4π7.設(shè)集合,,,則()A. B. C. D.8.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.9.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.10.已知數(shù)列的前項為和,且,則()A.5 B. C. D.9二、填空題:本大題共6小題,每小題5分,共30分。11.在軸上有一點,點到點與點的距離相等,則點坐標為____________.12.若復(fù)數(shù)滿足(為虛數(shù)單位),則__________.13.已知等比數(shù)列的前項和為,若,且,則_____.14.已知,,,則的最小值為________.15.已知扇形的半徑為6,圓心角為,則扇形的弧長為______.16.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,在平面直角坐標系中,銳角、的終邊分別與單位圓交于,兩點,點.(1)若點,求的值:(2)若,求.18.設(shè)為等差數(shù)列的前項和,已知,.(1)求數(shù)列的通項公式;(2)令,且數(shù)列的前項和為,求證:.19.某校從高一年級的一次月考成績中隨機抽取了50名學生的成績(滿分100分,且抽取的學生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.(1)用分層抽樣的方法從月考成績在內(nèi)的學生中抽取6人,求分別抽取月考成績在和內(nèi)的學生多少人;(2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調(diào)查,求月考成績在內(nèi)至少有1名學生被抽到的概率.20.已知圓與直線相切(1)若直線與圓交于兩點,求(2)已知,設(shè)為圓上任意一點,證明:為定值21.設(shè)是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項即可得解.【詳解】解:為非零實數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【點睛】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.2、D【解析】
根據(jù)向量垂直時數(shù)量積為0,列方程求出m的值.【詳解】向量,(m+1,﹣m),當⊥時,?0,即﹣(m+1)﹣2m=0,解得m.故選D.【點睛】本題考查了平面向量的數(shù)量積的坐標運算,考查了向量垂直的條件轉(zhuǎn)化,是基礎(chǔ)題.3、B【解析】
分析題意可知分針掃過圖形是扇形,要求這個扇形的面積需要得到扇形的圓心角和半徑,再代入扇形的面積公式計算即可.【詳解】經(jīng)過35分鐘,分針走了7個大格,每個大格則分鐘走過的度數(shù)為鐘表的分針長為10分針掃過圖形的面積是故選【點睛】本題主要考查了求扇形面積,結(jié)合公式需要求出扇形的圓心角和半徑,較為基礎(chǔ)4、D【解析】
運用正弦函數(shù)的一個周期的圖象,結(jié)合單調(diào)性、值域和對稱中心,以及不等式的解集,可得所求結(jié)論.【詳解】函數(shù)(),在,單調(diào)遞增,在上單調(diào)遞減;值域為;圖象關(guān)于點對稱;由可得,解得:.故選:D.【點睛】本題考查三角函數(shù)的圖象和性質(zhì),考查邏輯思維能力和運算能力,屬于??碱}.5、B【解析】
先根據(jù)勾股定理判斷為直角三角形,且,,再根據(jù)三角形相似可得,然后由向量的加減的幾何意義以及向量的數(shù)量積公式計算即可.【詳解】,,,,為直角三角形,且,,平行行四邊形的對角線相交于點,是的中點,,,,,故選B.【點睛】本題主要考查向量的加減的幾何意義以及向量的數(shù)量積公式的應(yīng)用.6、B【解析】
根據(jù)正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.【詳解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.設(shè)△ABC的外接圓半徑為R,則由正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.故選B.【點睛】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.7、A【解析】因為,所以,又因為,,故選A.8、B【解析】
根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.9、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個零點,因為,,所以,且當時,,,當時,,,當時,,,選項C滿足條件.故選C.點睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點的符號進行驗證,逐一驗證進行排除.10、D【解析】
先根據(jù)已知求出數(shù)列的通項,再求解.【詳解】當時,,可得;當且時,,得,故數(shù)列為等比數(shù)列,首項為4,公比為2.所以所以.故選D【點睛】本題主要考查項和公式求數(shù)列通項,考查等比數(shù)列的通項的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)點的坐標,根據(jù)空間兩點距離公式列方程求解.【詳解】由題:設(shè),點到點與點的距離相等,所以,,,解得:,所以點的坐標為.故答案為:【點睛】此題考查空間之間坐標系中兩點的距離公式,根據(jù)公式列方程求解點的坐標,關(guān)鍵在于準確辨析正確計算.12、【解析】分析:由復(fù)數(shù)的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.13、4或1024【解析】
當時得到,當時,代入公式計算得到,得到答案.【詳解】比數(shù)列的前項和為,當時:易知,代入驗證,滿足,故當時:故答案為:4或1024【點睛】本題考查了等比數(shù)列,忽略掉的情況是容易發(fā)生的錯誤.14、1【解析】
由題意整體代入可得,由基本不等式可得.【詳解】由,,,則.當且僅當=,即a=3且b=時,取得最小值1.故答案為:1.【點睛】本題考查基本不等式求最值,整體法并湊出可用基本不等式的形式是解決問題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】因為圓心角,所以弧長.故答案為:【點睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.16、【解析】
根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學生的計算能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)計算,,代入公式得到答案.(2)根據(jù),得到,根據(jù)計算得到答案.【詳解】解:(1)因為是銳角,且,在單位圓上,所以,,,∴(2)因為,所以,且,所以,,可得:,且,所以,.【點睛】本題考查了三角函數(shù)的計算,意在考查學生對于三角函數(shù)定義的理解和應(yīng)用.18、(1),(2)見解析【解析】
(1)根據(jù)等差數(shù)列的通項公式得到結(jié)果;(2)根據(jù)第一問得到,由裂項求和得到結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,由題意得,,解得,,則,.(2)由得∴.【點睛】這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。19、(1)有4人,有2人;(2)【解析】
(1)由頻率分布直方圖,求出成績在和內(nèi)的頻率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出從這6名學生中隨機抽取2名學生的所有不同取法,再求出被抽到的學生至少有1名月考成績在內(nèi)的不同取法,再求解即可.【詳解】解:(1)因為,所以,則月考成績在內(nèi)的學生有人;月考成績在內(nèi)的學生有人,則成績在和內(nèi)的頻率的比值為,故用分層抽樣的方法從月考成績在內(nèi)的學生中抽取4人,從月考成績在內(nèi)的學生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成績在內(nèi),分別記為,,,;有2人的月考成績在內(nèi),分別記為,.則從這6名學生中隨機抽取2名學生的情況為,,,,,,,,,,,,,,,共15種;被抽到的學生至少有1名月考成績在內(nèi)的情況為,,,,,,,,,共9種.故月考成績內(nèi)至少有1名學生被抽到的概率為.【點睛】本題考查了分層抽樣,重點考查了古典概型概率的求法,屬中檔題.20、(1)4;(2)詳見解析.【解析】
(1)利用直線與圓相切,結(jié)合點到直線距離公式求出半徑,從而得到圓的方程;根據(jù)直線被圓截得弦長的求解方法可求得結(jié)果;(2)設(shè),則,利用兩點間距離公式表示出,化簡可得結(jié)果.【詳解】(1)由題意知,圓心到直線的距離:圓與直線相切圓方程為:圓心到直線的距離:,(2)證明:設(shè),則即為定值【點睛】本題考查直線與圓的綜合應(yīng)用問題,涉及到直線與圓位置關(guān)系的應(yīng)用、直線被圓截得弦長的求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省2024年高考歷史壓軸卷含解析
- 誠信考試與假期安全教育
- 2024茶葉加盟合同范本
- 金融風險管理培訓(xùn)課程
- 深圳大學《藥物分析》2023-2024學年第一學期期末試卷
- 邊溝勞務(wù)施工合同(2篇)
- 石方爆破開挖施工合同協(xié)議書
- 回風斜井巷修工程協(xié)議書(2篇)
- 軍訓(xùn)總教官講話稿范文(8篇)
- 倉儲項目招投標關(guān)鍵點解析
- 第2章 空間數(shù)據(jù)結(jié)構(gòu)
- 石油煉化廠項目保險建議書課件
- 三審制及工作制度
- 吸附式空氣干燥機操作規(guī)程
- 防電信網(wǎng)絡(luò)詐騙知識競賽題庫
- 植物景觀分析及種植設(shè)計原則課件
- 水和水蒸氣焓值計算XLS
- 滴滴出行行程報銷單(可編輯版)
- 無機材料物理性能5電導(dǎo)
- 中國高級經(jīng)理人心理狀況調(diào)查報告
- 安全風險分級管控和隱患排查治理情況總結(jié)
評論
0/150
提交評論