版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東普寧華僑中學高考數(shù)學全真模擬密押卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.2.已知為虛數(shù)單位,若復數(shù),則A. B.C. D.3.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.4.已知是虛數(shù)單位,若,則()A. B.2 C. D.35.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.6.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.7.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、9.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.9810.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.11.已知集合,集合,則()A. B. C. D.12.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構成樂音的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的系數(shù)的和為________14.某種產品的質量指標值服從正態(tài)分布,且.某用戶購買了件這種產品,則這件產品中質量指標值位于區(qū)間之外的產品件數(shù)為_________.15.在平面直角坐標系中,若函數(shù)在處的切線與圓存在公共點,則實數(shù)的取值范圍為_____.16.實數(shù),滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.18.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:21.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據,其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.22.(10分)已知函數(shù).(1)當時,判斷在上的單調性并加以證明;(2)若,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據的結構形式,設,求導,則,在上是增函數(shù),再根據在中,,得到,,利用余弦函數(shù)的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數(shù)與函數(shù)的單調性,還考查了運算求解的能力,屬于中檔題.2、B【解析】
因為,所以,故選B.3、D【解析】
根據三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.4、A【解析】
直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.5、C【解析】
轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結合,轉化劃歸,數(shù)學運算的能力,屬于較難題.6、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.7、A【解析】
根據冪函數(shù)定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應用,屬于基礎題.8、A【解析】
設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數(shù),利用新函數(shù)的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.9、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.10、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.11、C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎題.12、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
設,令,的值即為所有項的系數(shù)之和?!驹斀狻吭O,令,所有項的系數(shù)的和為?!军c睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。14、【解析】
直接計算,可得結果.【詳解】由題可知:則質量指標值位于區(qū)間之外的產品件數(shù):故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.15、【解析】
利用導數(shù)的幾何意義可求得函數(shù)在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導數(shù)的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數(shù)范圍的問題,屬于基礎題.16、10【解析】
畫出可行域,根據目標函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數(shù)最大值的求法,基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.【點睛】本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數(shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調性.19、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.20、(1);(2)詳見解析.【解析】
(1)由短軸長可知,設,,由設而不求法作差即可求得,將相應值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當直線斜率存在時,設出直線方程,與橢圓聯(lián)立,結合中點坐標公式,弦長公式,得到與的關系,將表示出來,結合基本不等式求最值,證明最后的結果【詳解】解:(1)由已知,得由,兩式相減,得根據已知條件有,當時,∴,即∴橢圓的標準方程為(2)當直線斜率不存在時,,不等式成立.當直線斜率存在時,設由得∴,∴由化簡,得∴令,則當且僅當時取等號∴∵∴當且僅當時取等號綜上,【點睛】本題為直線與橢圓的綜合應用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉化處理復雜的計算形式,要求學生計算能力過關,為較難題21、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.22、(1)在為增函數(shù);證明見解析(2)【解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導數(shù)性質求出實數(shù)的取值范圍.【詳解】(1)當時,.記,則,當時,,.所以,所以在單調遞增,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度集合大合集員工管理十篇
- 單位管理制度集粹匯編人事管理篇十篇
- 《神經收集電子教案》課件
- 單位管理制度分享匯編【人力資源管理】
- 《硫與硫的化合物》課件
- 2024年交警內勤個人工作總結
- 八下期中測試卷02【測試范圍:第1-11課】(解析版)
- 寒假自習課 25春初中道德與法治八年級下冊教學課件 第三單元 第六課 第3課時 國家行政機關
- 《自體血回輸技術》課件
- 世界環(huán)境日節(jié)能減排保護環(huán)境綠色低碳環(huán)保主題123
- (滬教牛津版)深圳市小學1-6年級英語單詞默寫表(英文+中文+默寫)
- 樂山英文介紹
- 工程量清單清單計價封面
- 壓濾機產品質量檢測報告
- 日產5000噸水泥生產線建筑工程施工組織設計
- 267條表情猜成語【動畫版】
- 三戰(zhàn)課件(輿論戰(zhàn)、法律戰(zhàn)、心理戰(zhàn))
- 農民工工資專用賬戶資金管理協(xié)議
- 統(tǒng)編版語文二年級上冊 句子練習專項練習題(試題)( 無答案)
- 上海市歷年中考語文現(xiàn)代文閱讀真題40篇(2003-2021)
- 產品拆解:飛書多維表格怎么用
評論
0/150
提交評論