




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市雨花區(qū)南雅中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是等差數(shù)列,且,,則()A.-5 B.-11 C.-12 D.32.設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)取得最小值時,x+2y-z的最大值為()A.0 B.C.2 D.3.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積等于()A.π B.πC.16π D.32π4.一組數(shù)據(jù)0,1,2,3,4的方差是A. B. C.2 D.45.已知圓錐的母線長為6,母線與軸的夾角為30°,則此圓錐的體積為()A. B. C. D.6.下列函數(shù),是偶函數(shù)的為()A. B. C. D.7.某林區(qū)改變植樹計劃,第一年植樹增長率200%,以后每年的植樹增長率都是前一年植樹增長率的12,若成活率為100%,經(jīng)過4A.14 B.454 C.68.已知變量與負(fù)相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),則由該觀測數(shù)據(jù)算得的線性回歸方程可能是A. B.C. D.9.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內(nèi)隨機(jī)取一點,則此點取自陰影部分的概率是()A. B. C. D.10.在直角中,三條邊恰好為三個連續(xù)的自然數(shù),以三個頂點為圓心的扇形的半徑為1,若在中隨機(jī)地選取個點,其中有個點正好在扇形里面,則用隨機(jī)模擬的方法得到的圓周率的近似值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若為冪函數(shù),則滿足的的值為________.12.正三棱錐的底面邊長為2,側(cè)面均為直角三角形,則此三棱錐的體積為.13.一艘海輪從出發(fā),沿北偏東方向航行后到達(dá)海島,然后從出發(fā)沿北偏東方向航行后到達(dá)海島,如果下次直接從沿北偏東方向到達(dá),則______.14.直線過點且傾斜角為,直線過點且與垂直,則與的交點坐標(biāo)為____15.不論k為何實數(shù),直線通過一個定點,這個定點的坐標(biāo)是______.16.在公比為q的正項等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時,=_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,點,點P在x軸上(1)若,求點P的坐標(biāo):(2)若的面積為10,求點P的坐標(biāo).18.已知的內(nèi)角的對邊分別為,若向量,且.(1)求角的值;(2)已知的外接圓半徑為,求周長的取值范圍.19.已知向量,的夾角為120°,且||=2,||=3,設(shè)32,2.(Ⅰ)若⊥,求實數(shù)k的值;(Ⅱ)當(dāng)k=0時,求與的夾角θ的大?。?0.單調(diào)遞增的等差數(shù)列滿足,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.已知等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由是等差數(shù)列,求得,則可求【詳解】∵是等差數(shù)列,設(shè),∴故故選:B【點睛】本題考查等差數(shù)列的通項公式,考查計算能力,是基礎(chǔ)題2、C【解析】
由題得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.當(dāng)且僅當(dāng)x=2y時等號成立,則x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.當(dāng)y=1時,x+2y-z有最大值2.故選C.3、B【解析】
作軸截面,圓錐的軸截面是等腰三角形,外接球的截面是圓為球的大圓是的外接圓,由圖可得球的半徑與圓錐的關(guān)系.【詳解】如圖,作軸截面,圓錐的軸截面是等腰三角形,的外接圓是球的大圓,設(shè)該圓錐的外接球的半徑為R,依題意得,R2=(3-R)2+()2,解得R=2,所以所求球的體積V=πR3=π×23=π,故選B.【點睛】本題考查球的體積,關(guān)鍵是確定圓錐的外接球與圓錐之間的關(guān)系,即球半徑與圓錐的高和底面半徑之間的聯(lián)系,而這個聯(lián)系在其軸截面中正好體現(xiàn).4、C【解析】
先求得平均數(shù),再根據(jù)方差公式計算?!驹斀狻繑?shù)據(jù)的平均數(shù)為:方差是=2,選C?!军c睛】方差公式,代入計算即可。5、B【解析】
根據(jù)母線長和母線與軸的夾角求得底面半徑和圓錐的高,代入體積公式求得結(jié)果.【詳解】由題意可知,底面半徑;圓錐的高圓錐體積本題正確選項:【點睛】本題考查錐體體積的求解問題,屬于基礎(chǔ)題.6、B【解析】
逐項判斷各項的定義域是否關(guān)于原點對稱,再判斷是否滿足即可得解.【詳解】易知各選項的定義域均關(guān)于原點對稱.,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.【點睛】本題考查了誘導(dǎo)公式的應(yīng)用和函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.7、B【解析】
由題意知增長率形成以首項為2,公比為12的等比數(shù)列,從而第n年的增長率為12n-2,則第n【詳解】由題意知增長率形成以首項為2,公比為12的等比數(shù)列,從而第n年的增長率為1則第n年的林區(qū)的樹木數(shù)量為an∴a1=3a0,a因此,經(jīng)過4年后,林區(qū)的樹木量是原來的樹木量的454【點睛】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題的關(guān)鍵在于建立數(shù)列的遞推關(guān)系式,然后逐項進(jìn)行計算,考查分析問題和解決問題的能力,屬于中等題.8、D【解析】
由于變量與負(fù)相關(guān),得回歸直線的斜率為負(fù)數(shù),再由回歸直線經(jīng)過樣本點的中心,得到可能的回歸直線方程.【詳解】由于變量與負(fù)相關(guān),排除A,B,把代入直線得:成立,所以在直線上,故選D.【點睛】本題考查回歸直線斜率的正負(fù)、回歸直線過樣本點中心,考查基本數(shù)據(jù)處理能力.9、A【解析】試題分析:設(shè)扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強(qiáng),屬于較難題型.本題的總體思路較為簡單:所求概率值應(yīng)為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應(yīng)注意切割分解,“多還少補(bǔ)”.10、B【解析】由題直角中,三條邊恰好為三個連續(xù)的自然數(shù),設(shè)三邊為解得以三個頂點為圓心的扇形的面積和為由題故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)冪函數(shù)定義知,又,由二倍角公式即可求解.【詳解】因為為冪函數(shù),所以,即,因為,所以,即,因為,所以,.故填.【點睛】本題主要考查了冪函數(shù)的定義,正弦的二倍角公式,屬于中檔題.12、【解析】
由題意可得:該三棱錐的三條側(cè)棱兩兩垂直,長都為,所以三棱錐的體積.考點:三棱錐的體積公式.13、【解析】
首先根據(jù)余弦定理求出,在根據(jù)正弦定理求出,即可求出【詳解】有題知.所以.在中,,即,解得.所以,故答案為:【點睛】本題主要考查正弦定理和余弦定理的實際應(yīng)用,熟練掌握公式為解題的關(guān)鍵,屬于中檔題.14、【解析】
通過題意,求出兩直線方程,聯(lián)立方程即可得到交點坐標(biāo).【詳解】根據(jù)題意可知,因此直線為:,由于直線與垂直,故,所以,所以直線為:,聯(lián)立兩直線方程,可得交點.【點睛】本題主要考查直線方程的相關(guān)計算,難度不大.15、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點的直線系,解方程組,得上述直線恒過定點,故答案為.【方法點睛】本題主要考查待定直線過定點問題.屬于中檔題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).16、【解析】
利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)利用兩直線垂直,斜率之積為-1進(jìn)行求解(2)將三角形的面積問題轉(zhuǎn)化成點到直線的距離公式進(jìn)行求解【詳解】(1)設(shè)P點坐標(biāo)為,由題意,直線AB的斜率;因為,所以直線PB存在斜率且,即,解得;故點P的坐標(biāo)為;(2)設(shè)P點坐標(biāo)為,P到直線AB的距離為d;由已知,直線AB的方程為;的面積.得,即,解得或;所以點P的坐標(biāo)為或【點睛】兩直線垂直的斜率關(guān)系為;已知兩點坐標(biāo)時,距離公式為;三角形面積問題,??赊D(zhuǎn)化為點到直線距離公式進(jìn)行求解.18、(1)(2)【解析】試題分析:(1)由,得,利用正弦定理統(tǒng)一到角上易得(2)根據(jù)題意,得,由余弦定理,得,結(jié)合均值不等式可得,所以的最大值為4,又,從而得到周長的取值范圍.試題解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根據(jù)題意,得.由余弦定理,得,即,整理得,當(dāng)且僅當(dāng)時,取等號,所以的最大值為4.又,所以,所以.所以的周長的取值范圍為.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,結(jié)合向量的數(shù)量積的運(yùn)算公式,得到關(guān)于的方程,即可求解;(Ⅱ)當(dāng)時,利用向量的數(shù)量積的運(yùn)算公式,以及向量的夾角公式,即可求解.【詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當(dāng)k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以與的夾角θ的大小為.【點睛】本題主要考查了向量的數(shù)量積的運(yùn)算,以及向量的夾角公式的應(yīng)用,其中解答中熟記向量的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)設(shè)等差數(shù)列的公差為,,運(yùn)用等差數(shù)列的通項公式和等比數(shù)列中項性質(zhì),解方程可得公差,進(jìn)而得到所求通項公式;(2)求得,再用裂項相消法即可得出結(jié)論.【詳解】解:(1)設(shè)等差數(shù)列的公差為,,可得,,由,,成等比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高中數(shù)學(xué)最易丟分的20個知識點和易犯的72個低級錯誤
- 2025年Msoffice考試細(xì)則解析試題及答案
- DB36-T1805-2023-稻田磷素流失減控技術(shù)規(guī)程-江西省
- DB36-T1606-2022-山香圓栽培管理技術(shù)規(guī)程-江西省
- MySQL用戶管理試題及答案簡析
- 婦科腫瘤患者教育要點
- 生產(chǎn)管理通道認(rèn)資資格練習(xí)試題及答案
- 2025學(xué)年章貢區(qū)三年級英語期末考試試卷:詞匯與語法綜合能力測試
- 護(hù)理管道標(biāo)識粘貼規(guī)范與操作流程
- 患者入院護(hù)理操作規(guī)范
- 2024年國家電網(wǎng)招聘之通信類題庫及參考答案(考試直接用)
- 2024年廣東省廣州市中考語文試卷
- DB51-T 5048-2017 四川省地基與基礎(chǔ)施工工藝規(guī)程
- 《建筑工程設(shè)計文件編制深度規(guī)定》(2022年版)
- 23J916-1 住宅排氣道(一)
- 網(wǎng)絡(luò)傳播概論(第5版)課件 第八章 網(wǎng)絡(luò)時代的傳媒生態(tài)
- 高中政治必修四思維導(dǎo)圖
- 工程合同管理課程設(shè)計實踐報告
- 專題十五 民事權(quán)利與義務(wù)(考點講析+練習(xí))-2025年高考政治三輪沖刺過關(guān)(全國適用)
- 小學(xué)英語人教PEP版三至六年級全冊單詞詞匯默寫打印
- 2023-2024學(xué)年湖南省長沙市長沙縣八年級(下)月考數(shù)學(xué)試卷(6月份)(含答案)
評論
0/150
提交評論