版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年云南省臨滄一中高三3月份第一次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,2.下列函數中,圖象關于軸對稱的為()A. B.,C. D.3.已知正項數列滿足:,設,當最小時,的值為()A. B. C. D.4.“是函數在區(qū)間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.tan570°=()A. B.- C. D.6.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.7.關于圓周率,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區(qū)間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.8.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.9.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.10.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.404011.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行12.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.14.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)15.三棱柱中,,側棱底面,且三棱柱的側面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.16.在中,內角的對邊分別為,已知,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求的值;(2)令在上最小值為,證明:.18.(12分)在直角坐標系中,直線的參數方程為.(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.19.(12分)已知向量,函數.(1)求函數的最小正周期及單調遞增區(qū)間;(2)在中,三內角的對邊分別為,已知函數的圖像經過點,成等差數列,且,求a的值.20.(12分)已知正實數滿足.(1)求的最小值.(2)證明:21.(12分)已知函數(是自然對數的底數,).(1)求函數的圖象在處的切線方程;(2)若函數在區(qū)間上單調遞增,求實數的取值范圍;(3)若函數在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數取極值時對應的自變量的值).22.(10分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.2、D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.3、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.4、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.5、A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.6、D【解析】
構造函數,,利用導數分析出這兩個函數在區(qū)間上均為減函數,由得出,分、、三種情況討論,利用放縮法結合函數的單調性推導出或,再利用余弦函數的單調性可得出結論.【詳解】構造函數,,則,,所以,函數、在區(qū)間上均為減函數,當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數在區(qū)間上單調遞增,函數在區(qū)間上單調遞增,則,;③若,則,則,此時,由于函數在區(qū)間上單調遞減,函數在區(qū)間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數單調性的應用,構造新函數是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.7、B【解析】
先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.8、B【解析】
設,,,根據向量線性運算法則可表示出和;分別求解出和,,根據向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數量積運算將問題轉化為向量夾角的求解問題.9、B【解析】設折成的四棱錐的底面邊長為,高為,則,故由題設可得,所以四棱錐的體積,應選答案B.10、D【解析】
計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.11、B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.12、A【解析】
設為、的夾角,根據題意求得,然后建立平面直角坐標系,設,,,根據平面向量數量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數形結合思想的應用,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應用.14、①②③【解析】
對①,由線面平行的性質可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結合外接球半徑公式即可求解;對③,結合題意作出圖形,由勾股定理和內接圓對應面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結合幾何關系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設內心是,則平面,連接,則有,又內切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關系的應用,線面垂直的性質及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題15、【解析】
分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設棱柱的底面邊長為,高為,則三棱柱的側面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設,∴三棱柱的側面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學生對幾何體的正確認識,能通過題意了解到題目傳達的意思,培養(yǎng)學生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題16、【解析】
由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調遞減,在上單調遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調遞增;又,,所以,使得,當時,;當時,,即在上單調遞減,在上單調遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數法求函數的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數的單調性的考查,同時考查轉化與化歸的思想,屬于中檔題.18、(1),.(2)【解析】
(1)根據直線的參數方程為(為參數),消去參數,即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據點到直線距離公式,即可求得答案.【詳解】(1)直線的參數方程為(為參數),消去參數的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極坐標化直角坐標的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.19、(1),(2)【解析】
(1)利用向量的數量積和二倍角公式化簡得,故可求其周期與單調性;(2)根據圖像過得到,故可求得的大小,再根據數量積得到的乘積,最后結合余弦定理和構建關于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調遞增區(qū)間為;(2)由可得:,所以.又因為成等差數列,所以而,.20、(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.21、(1);(2);(3).【解析】
(1)利用導數的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調遞減,在上單調遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現大合集人員管理十篇
- 2024年城管督查個人總結
- 寒假自習課 25春初中道德與法治八年級下冊教學課件 第三單元 第五課 第1課時 根本政治制度
- 建筑工程行業(yè)安全管理工作總結
- 2011年高考語文試卷(大綱版全國Ⅱ卷)(空白卷)
- 化妝品行業(yè)銷售工作總結
- 小學數學教學計劃18篇
- 2023年項目部治理人員安全培訓考試題含下載答案可打印
- 2023年-2024年項目部安全培訓考試題答案往年題考
- 競業(yè)限制協議書三篇
- 項目部領導施工現場值班帶班交接班記錄表
- 2023年江蘇小高考歷史試卷
- 《運動解剖學》課程實驗課教案
- 2023年貴州貴安新區(qū)產業(yè)發(fā)展控股集團有限公司招聘筆試題庫含答案解析
- 現金盤點表完整版
- 精神病醫(yī)院管理制度
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 25840-2010規(guī)定電氣設備部件(特別是接線端子)允許溫升的導則
- 2020-2021學年貴州省黔東南州人教版六年級上冊期末文化水平測試數學試卷(原卷版)
- 魯科版化學必修二 1.1 原子結構 課件
- 國家開放大學《西方行政學說》形考任務1-4參考答案
評論
0/150
提交評論