云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省瀘西縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.182.已知直線的傾斜角為,且過點,則直線的方程為()A. B. C. D.3.在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關(guān)于x的方程有實數(shù)根的概率為()A. B. C. D.4.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.5.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形6.已知中,,則角()A.60°或120° B.30°或90° C.30° D.90°7.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.8.已知是單位向量,.若向量滿足()A. B.C. D.9.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.10.已知向量,,若,則的值為()A. B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某中學(xué)初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.12.已知是第二象限角,且,且______.13.若是等差數(shù)列,首項,,,則使前項和最大的自然數(shù)是________.14.已知,,是與的等比中項,則最小值為_________.15.若數(shù)列{an}滿足a1=2,a16.圓臺兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,.(1)求的值;(2)若,均為銳角,求的值.18.已知圓心在直線上的圓C經(jīng)過點,且與直線相切.(1)求過點P且被圓C截得的弦長等于4的直線方程;(2)過點P作兩條相異的直線分別與圓C交于A,B,若直線PA,PB的傾斜角互補,試判斷直線AB與OP的位置關(guān)系(O為坐標(biāo)原點),并證明.19.記為數(shù)列的前項和,且滿足.(1)求數(shù)列的通項公式;(2)記,求滿足等式的正整數(shù)的值.20.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點,分別為和的中點.(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.21.已知是復(fù)數(shù),與均為實數(shù),且復(fù)數(shù)在復(fù)平面上對應(yīng)的點在第一象限,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用等差數(shù)列的性質(zhì),將等式全部化為的形式,再計算。【詳解】因為,且,則,所以.故選D【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題。2、B【解析】

根據(jù)傾斜角的正切值為斜率,再根據(jù)點斜式寫出直線方程,化為一般式即可.【詳解】因為直線的傾斜角為,故直線斜率.又直線過點,故由點斜式方程可得整理為一般式可得:.故選:B.【點睛】本題考查直線方程的求解,涉及點斜式,屬基礎(chǔ)題.3、C【解析】

由關(guān)于x的方程有實數(shù)根,求得,再結(jié)合長度比的幾何概型,即可求解,得到答案.【詳解】由題意,關(guān)于x的方程有實數(shù)根,則滿足,解得,所以在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關(guān)于x的方程有實數(shù)根的概率為.故選:C.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、D【解析】

根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應(yīng)用,注意增根的排除.5、D【解析】

由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當(dāng)時,,無意義.當(dāng)時,,此時為正三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.6、B【解析】

由正弦定理求得,再求.【詳解】由正弦定理,∴,或,時,,時,.故選:B.【點睛】本題考查正弦定理,在用正弦定理解三角形時,可能會出現(xiàn)兩解,一定要注意.7、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.8、A【解析】

因為,,做出圖形可知,當(dāng)且僅當(dāng)與方向相反且時,取到最大值;最大值為;當(dāng)且僅當(dāng)與方向相同且時,取到最小值;最小值為.9、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.10、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【點睛】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.12、【解析】

利用同角三角函數(shù)的基本關(guān)系求出,然后利用誘導(dǎo)公式可求出的值.【詳解】是第二象限角,則,由誘導(dǎo)公式可得.故答案為:.【點睛】本題考查利用同角三角函數(shù)的基本關(guān)系和誘導(dǎo)公式求值,考查計算能力,屬于基礎(chǔ)題.13、【解析】

由已知條件推導(dǎo)出,,由此能求出使前項和成立的最大自然數(shù)的值.【詳解】解:等差數(shù)列,首項,,,,.如若不然,,則,而,得,矛盾,故不可能.使前項和成立的最大自然數(shù)為.故答案為:.【點睛】本題考查等差數(shù)列的前項和取最大值時的值的求法,是中檔題,解題時要認(rèn)真審題,注意等差數(shù)列的通項公式的合理運用.14、1【解析】

根據(jù)等比中項定義得出的關(guān)系,然后用“1”的代換轉(zhuǎn)化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當(dāng)且僅當(dāng),即時等號成立.所以最小值為1.故答案為:1.【點睛】本題考查等比中項的定義,考查用基本不等式求最值.解題關(guān)鍵是用“1”的代換找到定值,從而可用基本不等式求最值.15、2×【解析】

判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.16、63【解析】

首先畫出軸截面,然后結(jié)合圓臺的性質(zhì)和軸截面整理計算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點睛】本題主要考查圓臺的空間結(jié)構(gòu)特征及相關(guān)元素的計算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用誘導(dǎo)公式可得的值,再利用兩角和的正且公式可求得的值.

(2)先判斷角的范圍,再求的值,可求得的值.【詳解】(1).,可得:(2)由,均為銳角,由(1)所以,所以所以【點睛】本題考查三角函數(shù)的誘導(dǎo)公式和角變換的應(yīng)用,考查知值求值和角,屬于中檔題.18、(1)或;(2)平行【解析】

(1)設(shè)出圓的圓心為,半徑為,可得圓的標(biāo)準(zhǔn)方程,根據(jù)題意可得,解出即可得出圓的方程,討論過點P的直線斜率存在與否,再根據(jù)點到直線的距離公式即可求解.(2)由題意知,直線PA,PB的傾斜角互補,分類討論兩直線的斜率存在與否,當(dāng)斜率均存在時,則直線PA的方程為:,直線PB的方程為:,分別與圓C聯(lián)立可得,利用斜率的計算公式與作比較即可.【詳解】(1)根據(jù)題意,不妨設(shè)圓C的圓心為,半徑為,則圓C,由圓C經(jīng)過點,且與直線相切,則,解得,故圓C的方程為:,所以點在圓上,過點P且被圓C截得的弦長等于4的直線,當(dāng)直線的斜率不存在時,直線為:,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的斜率為,直線方程為:,故,解得,故直線方程為:.綜上所述:所求直線的方程:或.(2)由題意知,直線PA,PB的傾斜角互補,且直線PA,PB的斜率均存在,設(shè)兩直線的傾斜角為和,,,因為,由正切的性質(zhì),則,不妨設(shè)直線的斜率為,則PB的斜率為,即:,則:,由,得,點的橫坐標(biāo)為一定是該方程的解,故可得,同理,,,,直線AB與OP平行.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程,已知弦長求直線方程,考查了直線與圓的位置關(guān)系以及學(xué)生的計算能力,屬于中檔題.19、(1);(2)【解析】

(1)首先利用數(shù)列的遞推關(guān)系式求出數(shù)列的通項公式;(2)先求出,再利用裂項相消法求出數(shù)列的和,解出即可.【詳解】(1)由為數(shù)列的前項和,且滿足.當(dāng)時,,得.當(dāng)時,,得,所以數(shù)列是以2為首項,以為公比的等比數(shù)列,則數(shù)列的通項公式為.(2)由,得由,解得.【點睛】本題考查了等比數(shù)列的通項公式的求法,裂項相消法求數(shù)列的和,屬于基礎(chǔ)題.20、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】

(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點,連接,,∵,分別為和的中點,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論