




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春市第150中學(xué)2024屆高一下數(shù)學(xué)期末監(jiān)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若滿足條件C=60°,AB=,BC=的△ABC有()個(gè)A.
B. C.
D.32.給出下列命題:(1)存在實(shí)數(shù)使.(2)直線是函數(shù)圖象的一條對稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號(hào)為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)3.若對任意,不等式恒成立,則a的取值范圍為()A. B. C. D.4.設(shè)公差為-2的等差數(shù)列,如果,那么等于()A.-182 B.-78 C.-148 D.-825.在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若,則()A. B. C. D.6.已知,那么等于()A. B. C. D.57.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.8.?dāng)?shù)列的通項(xiàng),其前項(xiàng)和為,則為()A. B. C. D.9.延長正方形的邊至,使得.若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿正方形的邊按逆時(shí)針方向運(yùn)動(dòng)一周回到點(diǎn),若,下列判斷正確的是()A.滿足的點(diǎn)必為的中點(diǎn)B.滿足的點(diǎn)有且只有一個(gè)C.的最小值不存在D.的最大值為10.從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng),則甲被選中的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)fx=cosx+2cosx,x∈12.在中,,,則的值為________13.設(shè)函數(shù)滿足,當(dāng)時(shí),,則=________.14.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項(xiàng)公式為_______15.點(diǎn)到直線的距離為________.16.程的解為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列的前項(xiàng)和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和;(3)在(2)的條件下,當(dāng)時(shí),比較和的大?。?8.已知兩個(gè)不共線的向量a,b滿足,,.(1)若,求角θ的值;(2)若與垂直,求的值;(3)當(dāng)時(shí),存在兩個(gè)不同的θ使得成立,求正數(shù)m的取值范圍.19.如圖,平行四邊形中,是的中點(diǎn),交于點(diǎn).設(shè),.(1)分別用,表示向量,;(2)若,,求.20.在中,角的對邊分別為,的面積是30,.(1)求;(2)若,求的值.21.已知數(shù)列的前n項(xiàng)和為,滿足:.(1)證明:數(shù)列是等比數(shù)列;(2)令,,求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
通過判斷與c判斷大小即可得到知道三角形個(gè)數(shù).【詳解】由于,所以△ABC有兩解,故選C.【點(diǎn)睛】本題主要考查三角形解得個(gè)數(shù)判斷,難度不大.2、C【解析】
(1)化簡求值域進(jìn)行判斷;(2)根據(jù)函數(shù)的對稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進(jìn)行判斷.【詳解】解:(1),(1)錯(cuò)誤;(2)是函數(shù)圖象的一個(gè)對稱中心,(2)錯(cuò)誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點(diǎn)睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學(xué)生綜合運(yùn)用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.3、D【解析】
對任意,不等式恒成立,即恒成立,代入計(jì)算得到答案.【詳解】對任意,不等式恒成立即恒成立故答案為D【點(diǎn)睛】本題考查了不等式恒成立問題,意在考查學(xué)生的計(jì)算能力和解決問題的能力.4、D【解析】
根據(jù)利用等差數(shù)列通項(xiàng)公式及性質(zhì)求得答案.【詳解】∵{an}是公差為﹣2的等差數(shù)列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式及性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬基礎(chǔ)題.5、D【解析】
由題意得到,再由兩角差的余弦及同角三角函數(shù)的基本關(guān)系式化簡求解.【詳解】解:∵角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,
∴,
,
故選:D.【點(diǎn)睛】本題考查了兩角差的余弦公式的應(yīng)用,是基礎(chǔ)題.6、B【解析】
因?yàn)?,所以,故選B.7、D【解析】試題分析:當(dāng)時(shí),該程序框圖所表示的算法功能為:,故選D.考點(diǎn):程序框圖.8、A【解析】分析:利用二倍角的余弦公式化簡得,根據(jù)周期公式求出周期為,從而可得結(jié)果.詳解:首先對進(jìn)行化簡得,又由關(guān)于的取值表:123456可得的周期為,則可得,設(shè),則,故選A.點(diǎn)睛:本題考查二倍角的余弦公式、三角函數(shù)的周期性以及等差數(shù)列的求和公式,意在考查靈活運(yùn)用所學(xué)知識(shí)解決問題的能力以及計(jì)算能力,求求解過程要細(xì)心,注意避免計(jì)算錯(cuò)誤.9、D【解析】試題分析:設(shè)正方形的邊長為1,建立如圖所示直角坐標(biāo)系,則的坐標(biāo)為,則設(shè),由得,所以,當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;由以上討論可知,當(dāng)時(shí),可為的中點(diǎn),也可以是點(diǎn),所以A錯(cuò);使的點(diǎn)有兩個(gè),分別為點(diǎn)與中點(diǎn),所以B錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最小值,故C錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最大值,所以D正確,故選D.考點(diǎn):向量的坐標(biāo)運(yùn)算.【名師點(diǎn)睛】本題考查平面向量線性運(yùn)算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標(biāo)化是聯(lián)系圖形與代數(shù)運(yùn)算的渠道,通過構(gòu)建直角坐標(biāo)系,使得向量運(yùn)算完全代數(shù)化,通過加、減、數(shù)乘的運(yùn)算法則,實(shí)現(xiàn)了數(shù)形的緊密結(jié)合,同時(shí)將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標(biāo)函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標(biāo)相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.10、C【解析】分析:用列舉法得出甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng)的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng),包括:甲乙;甲丙;甲??;乙丙;乙??;丙丁6種情況,甲被選中的概率為.故選C.點(diǎn)睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、(0,1)【解析】
畫出函數(shù)f(x)在x∈0,2【詳解】解:畫出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個(gè)不同的交點(diǎn),可得0<k<1.故答案為:(0,1).【點(diǎn)睛】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.12、【解析】
由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因?yàn)?,,所以,所以,在中,由正弦定理得,所?【點(diǎn)睛】本題考查正弦定理解三角形,屬于簡單題.13、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結(jié)果.【詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時(shí),f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【點(diǎn)睛】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.14、【解析】
把集合中每個(gè)數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個(gè)數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計(jì)算,可求出數(shù)列的通項(xiàng)公式.【詳解】由題意可知,,,,是0,1,2,,的一個(gè)排列,且集合中共有個(gè)數(shù),若把集合中每個(gè)數(shù)表示為的形式,則,,,,每個(gè)數(shù)都出現(xiàn)次,因此,,故答案為:.【點(diǎn)睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學(xué)生的理解能力與計(jì)算能力,屬于中等題.15、3【解析】
根據(jù)點(diǎn)到直線的距離公式,代值求解即可.【詳解】根據(jù)點(diǎn)到直線的距離公式,點(diǎn)到直線的距離為.故答案為:3.【點(diǎn)睛】本題考查點(diǎn)到直線的距離公式,屬基礎(chǔ)題.16、【解析】
設(shè),即求二次方程的正實(shí)數(shù)根,即可解決問題.【詳解】設(shè),即轉(zhuǎn)化為求方程的正實(shí)數(shù)根由得或(舍)所以,則故答案為:【點(diǎn)睛】本題考查指數(shù)型二次方程,考查換元法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】
(1)設(shè)等差數(shù)列的公差為,利用等差數(shù)列的通項(xiàng)公式和求和公式,解方程可得首項(xiàng)和公差,進(jìn)而得到通項(xiàng)公式;(2)由(1)得,利用等差數(shù)列的求和公式可得;(3)分別求得和,作差比較即可得到大小關(guān)系.【詳解】(1)設(shè)等差數(shù)列的公差為,由,得,化簡得①.由,得,得②.由①②解得:,,則.則數(shù)列的通項(xiàng)公式為.(2)由(1)得,①當(dāng)時(shí),,;②當(dāng)且時(shí),,兩式作差得:有:有:有:得由上知.(3)由(1)得由,由(2)得當(dāng)時(shí),,令.則.由,有,得,故單調(diào)遞增.又由,故,可得.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,也考查了錯(cuò)位相減法求數(shù)列的和,分類討論思想和作差比較大小的問題,屬于中檔題.18、(1)(2)(3)【解析】
(1)由題得,再寫出方程的解即得解;(2)先求出,再利用向量的模的公式求出;(3)等價(jià)于在有兩解,結(jié)合三角函數(shù)分析得解.【詳解】(1)由題得所以角的集合為.(2)由條件知,,又與垂直,所以,所以.所以,故.(3)由,得,即,即,,所以.由得,又要有兩解,結(jié)合三角函數(shù)圖象可得,,即,又因?yàn)?,所?即m的范圍.【點(diǎn)睛】本題主要考查向量平行垂直的坐標(biāo)表示,考查向量的模的計(jì)算,考查三角函數(shù)圖像和性質(zhì)的綜合應(yīng)用,意在考查學(xué)生對這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.19、(1),(2)2【解析】
(1)由平面的加法可得,又根據(jù)三角形相似得到,再根據(jù)向量的減法可得的不等式.
(2)由平面向量數(shù)量積運(yùn)算得,然后再將條件代入可得答案.【詳解】(1).由∽,又所以,即(2)由,【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算及平面向量數(shù)量積運(yùn)算,屬中檔題.20、(1)144;(2)5.【解析】
(1)由同角的三角函數(shù)關(guān)系,由,可以求出的值,再由面積公式可以求出的值,最后利用平面向量數(shù)量積的公式求出的值;(2)由(1)可知的值,再結(jié)合已知,可以求出的值,由余弦定理可以求出的值.【詳解】(1),又因?yàn)榈拿娣e是30,所以,因此(2)由(1)可知,與聯(lián)立,組成方程組:,解得或,不符合題意舍去,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工地鋼筋碎料管理制度
- 兒童重點(diǎn)人群管理制度
- 公司辦公用章管理制度
- 公用浴室使用管理制度
- 婚喪嫁娶備案管理制度
- 關(guān)于躉船安全管理制度
- 團(tuán)委預(yù)算業(yè)務(wù)管理制度
- 值班護(hù)士宵夜管理制度
- 宿舍教室衛(wèi)生管理制度
- 醫(yī)院數(shù)據(jù)提取管理制度
- 《大數(shù)據(jù)技術(shù)原理與應(yīng)用(第3版)》期末復(fù)習(xí)題庫(含答案)
- 中學(xué)物理教材教法復(fù)習(xí)題
- 第13課第1課時(shí)立足專業(yè)謀劃發(fā)展【中職專用】《心理健康與職業(yè)生涯》(高教版2023基礎(chǔ)模塊)
- 中職英語基礎(chǔ)模塊一Unit 8 People and events Reading
- 供應(yīng)商黑名單
- 船用纜繩標(biāo)準(zhǔn)
- 班主任育人故事(通用17篇)
- 食材配送投標(biāo)方案(技術(shù)方案)
- 第三章 結(jié)構(gòu)材料的力學(xué)性能及指標(biāo)
- 國開經(jīng)濟(jì)法律基礎(chǔ)形考任務(wù)國開電大《經(jīng)濟(jì)法律基礎(chǔ)》形考任務(wù)3答案
- 2022年1月福建省普通高中學(xué)業(yè)水平合格性考試化學(xué)試題
評論
0/150
提交評論