全國市級聯(lián)考湖南省邵陽市中考數(shù)學(xué)全真模擬試卷及答案解析_第1頁
全國市級聯(lián)考湖南省邵陽市中考數(shù)學(xué)全真模擬試卷及答案解析_第2頁
全國市級聯(lián)考湖南省邵陽市中考數(shù)學(xué)全真模擬試卷及答案解析_第3頁
全國市級聯(lián)考湖南省邵陽市中考數(shù)學(xué)全真模擬試卷及答案解析_第4頁
全國市級聯(lián)考湖南省邵陽市中考數(shù)學(xué)全真模擬試卷及答案解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

[全國市級聯(lián)考]湖南省邵陽市中考數(shù)學(xué)全真模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.隨著我國綜合國力的提升,中華文化影響日益增強,學(xué)中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學(xué)記數(shù)法表示為()A. B. C. D.2.如圖,⊙O內(nèi)切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.43.下列分式中,最簡分式是()A. B. C. D.4.如右圖,⊿ABC內(nèi)接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°5.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.6.魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計算圓周率建立了嚴密的理論和完善的算法.作圓內(nèi)接正多邊形,當正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點后七位的圓周率,這一成就在當時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π7.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個8.在一張考卷上,小華寫下如下結(jié)論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.9.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.710.在平面直角坐標系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限二、填空題(共7小題,每小題3分,滿分21分)11.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.12.有一個計算程序,每次運算都是把一個數(shù)先乘以2,再除以它與1的和,多次重復(fù)進行這種運算的過程如下:則,y2=_____,第n次的運算結(jié)果yn=_____.(用含字母x和n的代數(shù)式表示).13.一組數(shù)據(jù)1,4,4,3,4,3,4的眾數(shù)是_____.14.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.15.如圖,在平面直角坐標系中,函數(shù)y=(k>0)的圖象經(jīng)過點A(1,2)、B兩點,過點A作x軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點B的坐標為___________.16.化簡:______.17.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.19.(5分)已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.20.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標;(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當AM+CN的值最大時,求點D的坐標.21.(10分)先化簡,再求值:(),其中=22.(10分)如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長;設(shè)邊BC的垂直平分線與邊AB的交點為D,求的值.23.(12分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.24.(14分)﹣(﹣1)2018+﹣()﹣1

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】210萬=2100000,2100000=2.1×106,故選B.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.2、C【解析】

連接,交于點設(shè)則根據(jù)△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內(nèi)切于正方形為的切線,經(jīng)過點為等腰直角三角形,為的切線,設(shè)則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質(zhì),等腰直角三角形的性質(zhì),三角形的面積公式,綜合性比較強.3、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.4、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A5、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.6、C【解析】

連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.7、B【解析】

根據(jù)無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【點睛】本題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、D【解析】

首先判斷出四個結(jié)論的錯誤個數(shù)和正確個數(shù),進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;

,正確;

,錯誤;

若,則它們互余,錯誤;

則,,

,

故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學(xué)記數(shù)法、余角和負整數(shù)指數(shù)冪,關(guān)鍵是正確確定m、n的值.9、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.10、D【解析】

先根據(jù)第一象限內(nèi)的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【點睛】本題考查了點的坐標,解決本題的關(guān)鍵是牢記平面直角坐標系中各個象限內(nèi)點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.12、【解析】

根據(jù)題目中的程序可以分別計算出y2和yn,從而可以解答本題.【詳解】∵y1=,∴y2===,y3=,……yn=.故答案為:.【點睛】本題考查了分式的混合運算,解答本題的關(guān)鍵是明確題意,用代數(shù)式表示出相應(yīng)的y2和yn.13、1【解析】

本題考查了統(tǒng)計的有關(guān)知識,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故答案為1.【點睛】本題為統(tǒng)計題,考查了眾數(shù)的定義,是基礎(chǔ)題型.14、8【解析】

在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.15、(4,).【解析】

由于函數(shù)y=(x>0常數(shù)k>0)的圖象經(jīng)過點A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.設(shè)B點的橫坐標是m,則AC邊上的高是(m-1),根據(jù)三角形的面積公式得到關(guān)于m的方程,從而求出,然后把m的值代入y=,即可求得B的縱坐標,最后就求出了點B的坐標.【詳解】∵函數(shù)y=(x>0、常數(shù)k>0)的圖象經(jīng)過點A(1,1),∴把(1,1)代入解析式得到1=,∴k=1,設(shè)B點的橫坐標是m,則AC邊上的高是(m-1),∵AC=1∴根據(jù)三角形的面積公式得到×1?(m-1)=3,∴m=4,把m=4代入y=,∴B的縱坐標是,∴點B的坐標是(4,).故答案為(4,).【點睛】解答本題的關(guān)鍵是根據(jù)已知坐標系中點的坐標,可以表示圖形中線段的長度.根據(jù)三角形的面積公式即可解答.16、3【解析】分析:根據(jù)算術(shù)平方根的概念求解即可.詳解:因為32=9所以=3.故答案為3.點睛:此題主要考查了算術(shù)平方根的意義,關(guān)鍵是確定被開方數(shù)是哪個正數(shù)的平方.17、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設(shè)平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據(jù)ASA證明△ACE≌△CBF,設(shè)平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關(guān)鍵是合理添加輔助線構(gòu)造全等三角形;三、解答題(共7小題,滿分69分)18、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關(guān)鍵是求出點M的坐標;首先根據(jù)①的函數(shù)解析式設(shè)出M點的坐標,然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進行解答即可.③設(shè)⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點;后兩個小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.19、(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】

(1)利用待定系數(shù)法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設(shè)直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,

則PE=PD,

點P(m,-m2+2m+6),

函數(shù)的對稱軸為:x=2,則點E的橫坐標為:4-m,

則PE=|2m-4|,

即-m2+2m+6+m-6=|2m-4|,

解得:m=4或-2或5+或5-(舍去-2和5+)

故點P的坐標為:(4,6)或(5-,3-5).【點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.20、(1)y=﹣x2﹣x+3;(2)點P的坐標為(﹣,1);(3)當AM+CN的值最大時,點D的坐標為(,).【解析】

(1)利用一次函數(shù)圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結(jié)合點B的橫坐標可得出點B的坐標,根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標;(3)連接AC交OD于點F,由點到直線垂線段最短可找出當AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標為(﹣4,0),點C的坐標為(0,3).∵點B在x軸上,點B的橫坐標為,∴點B的坐標為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設(shè)點D的坐標為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標為(,),故當AM+CN的值最大時,點D的坐標為(,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標,利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標為(﹣3t,4t).21、【解析】分析:首先將括號里面的分式進行通分,然后將分式的分子和分母進行因式分解,然后將除法改成乘法進行約分化簡,最后將a的值代入化簡后的式子得出答案.詳解:原式=將原式=點睛:本題主要考查的是分式的化簡求值,屬于簡單題型.解決這個問題的關(guān)鍵就是就是將括號里面的分式進行化成同分母.22、(1)AC=;(2).【解析】【分析】(1)過A作AE⊥BC,在直角三角形ABE中,利用銳角三角函數(shù)定義求出AC的長即可;(2)由DF垂直平分BC,求出BF的長,利用銳角三角函數(shù)定義求出DF的長,利用勾股定理求出BD的長,進而求出AD的長,即可求出所求.【詳解】(1)如圖,過點A作AE⊥BC,在Rt△ABE中,tan∠ABC=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根據(jù)勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF=,∴DF=,在Rt△BFD中,根據(jù)勾股定理得:BD==,∴AD=5﹣=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論