湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁
湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁
湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁
湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁
湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省常德市石門縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.式子的值為()A. B.0 C.1 D.2.《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著,在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的.“九兒問甲歌”就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問小兒多少歲,各兒歲數(shù)要誰推,這位公公年齡最小的兒子年齡為()A.8歲 B.11歲 C.20歲 D.35歲3.函數(shù)的一個對稱中心是()A. B. C. D.4.在中,所對的邊分別為,若,,,則()A. B. C.1 D.35.已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.①②④ C.③④ D.①②③④6.已知向量,,如果向量與平行,則實數(shù)的值為()A. B. C. D.7.如果直線a平行于平面,則()A.平面內(nèi)有且只有一直線與a平行B.平面內(nèi)有無數(shù)條直線與a平行C.平面內(nèi)不存在與a平行的直線D.平面內(nèi)的任意直線與直線a都平行8.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.69.在ΔABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知A=60°,a=43,A.30° B.45° C.6010.一游客在處望見在正北方向有一塔,在北偏西方向的處有一寺廟,此游客騎車向西行后到達處,這時塔和寺廟分別在北偏東和北偏西,則塔與寺廟的距離為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)12.已知向量,滿足,與的夾角為,則在上的投影是;13.將2本不同的數(shù)學(xué)書和1本語文書在書架上隨機排成一行,則2本數(shù)學(xué)書相鄰的概率為________.14.已知向量,,則在方向上的投影為______.15.已知l,m是平面外的兩條不同直線.給出下列三個論斷:①l⊥m;②m∥;③l⊥.以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:__________.16.已知數(shù)列是等差數(shù)列,若,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.18.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案(1)的概率;19.已知數(shù)列的前項和為,點在直線上.數(shù)列滿足且,前9項和為153.(1)求數(shù)列、的通項公式;(2)設(shè),數(shù)列的前項和為,求及使不等式對一切都成立的最小正整數(shù)的值;(3)設(shè),問是否存在,使得成立?若不存在,請說明理由.20.已知:(,為常數(shù)).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.21.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)兩角和的余弦公式,得到原式,即可求解,得到答案.【詳解】由兩角和的余弦公式,可得,故選B.【點睛】本題主要考查了兩角和的余弦公式的化簡求值,其中解答中熟記兩角和的余弦公式是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.2、B【解析】

九個兒子的年齡成等差數(shù)列,公差為1.【詳解】由題意九個兒子的年齡成等差數(shù)列,公差為1.記最小的兒子年齡為a1,則S9=9故選B.【點睛】本題考查等差數(shù)列的應(yīng)用,解題關(guān)鍵正確理解題意,能用數(shù)列表示題意并求解.3、A【解析】

令,得:,即函數(shù)的對稱中心為,再求解即可.【詳解】解:令,解得:,即函數(shù)的對稱中心為,令,即函數(shù)的一個對稱中心是,故選:A.【點睛】本題考查了正切函數(shù)的對稱中心,屬基礎(chǔ)題.4、A【解析】

利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運算求解能力.5、B【解析】

設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項驗證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.【詳解】設(shè)數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號為①②④故選:B.【點睛】本題考查新定義,考查對數(shù)的運算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.6、B【解析】

根據(jù)坐標(biāo)運算求出和,利用平行關(guān)系得到方程,解方程求得結(jié)果.【詳解】由題意得:,,解得:本題正確選項:【點睛】本題考查向量平行的坐標(biāo)表示問題,屬于基礎(chǔ)題.7、B【解析】

根據(jù)線面平行的性質(zhì)解答本題.【詳解】根據(jù)線面平行的性質(zhì)定理,已知直線平面.

對于A,根據(jù)線面平行的性質(zhì)定理,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故A錯誤;

對于B,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故B正確;

對于C,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,所以C錯誤;

對于D,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,則在平面內(nèi)與直線相交的直線與a不平行,所以D錯誤;

故選:B.【點睛】本題考查了線面平行的性質(zhì)定理;如果直線與平面平行,那么過直線的平面與已知平面相交,直線與交線平行.8、C【解析】

由題意作出不等式組所表示的平面區(qū)域,將化為,相當(dāng)于直線的縱截距,由幾何意義可得結(jié)果.【詳解】由題意作出其平面區(qū)域,令,化為,相當(dāng)于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.9、A【解析】

根據(jù)正弦定理求得sinB,根據(jù)大邊對大角的原則可求得B【詳解】由正弦定理asinA∵b<a∴B<A∴B=本題正確選項:A【點睛】本題考查正弦定理解三角形,易錯點是忽略大邊對大角的特點,屬于基礎(chǔ)題.10、C【解析】

先根據(jù)題干描述,畫出ABCD的相對位置,再解三角形.【詳解】如圖先求出,的長,然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故選C.【點睛】本題考查正余弦定理解決實際問題中的距離問題,正確畫出其相對位置是關(guān)鍵,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、72【解析】

先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為.【詳解】先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【點睛】本題考查排列、組合計數(shù)原理的應(yīng)用,考查基本運算能力.12、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值13、【解析】2本不同的數(shù)學(xué)書和1本語文書在書架上隨機排成一行,所有的基本事件有(數(shù)學(xué)1,數(shù)學(xué)2,語文),(數(shù)學(xué)1,語文,數(shù)學(xué)2),(數(shù)學(xué)2,數(shù)學(xué)1,語文),(數(shù)學(xué)2,語文,數(shù)學(xué)1),(語文,數(shù)學(xué)1,數(shù)學(xué)2),(語文,數(shù)學(xué)2,數(shù)學(xué)1)共6個,其中2本數(shù)學(xué)書相鄰的有(數(shù)學(xué)1,數(shù)學(xué)2,語文),(數(shù)學(xué)2,數(shù)學(xué)1,語文),(語文,數(shù)學(xué)1,數(shù)學(xué)2),(語文,數(shù)學(xué)2,數(shù)學(xué)1)共4個,故2本數(shù)學(xué)書相鄰的概率.14、【解析】

由平面向量投影的定義可得出在方向上的投影為,從而可計算出結(jié)果.【詳解】設(shè)平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】

將所給論斷,分別作為條件、結(jié)論加以分析.【詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.16、【解析】

求出公差,利用通項公式即可求解.【詳解】設(shè)公差為,則所以故答案為:【點睛】本題主要考查了等差數(shù)列基本量的計算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當(dāng)時,函數(shù)取最小值.【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,再利用正弦函數(shù)的基本性質(zhì)可求得該函數(shù)的最小值及其對應(yīng)的值.【詳解】(1),所以,函數(shù)的最小正周期為;令,得,所以函數(shù)的單調(diào)增區(qū)間為;(2)當(dāng)時,,所以,當(dāng)時,即當(dāng)時,取得最小值,所以,函數(shù)在區(qū)間上的最小值為,此時.【點睛】本題考查正弦型函數(shù)的最小正周期和單調(diào)區(qū)間、最值的求解,解答的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,考查計算能力,屬于中等題.18、(1)0.4(2)【解析】

(1)從頻率分布直方圖中計算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計算出結(jié)果?!驹斀狻浚?)設(shè)事件為“隨機選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于單”依題意,連鎖店的人均日快遞業(yè)務(wù)量不少于單的頻率分別為:因為所以估計為;(2)設(shè)事件為“從四名騎手中隨機選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【點睛】本題考查頻率分布直方圖以及古典概型概率的計算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(2)所有矩形的面積之和為。19、(1);(2)1009;(3)m=11.【解析】

(1)運用數(shù)列的通項公式和前n項和的關(guān)系,即可得到數(shù)列的通項公式;運用等差數(shù)列的通項和求和公式,求出公差,即可得到數(shù)列的通項公式;(2)化簡,運用裂項相消法求和,求出數(shù)列的前n項和為,再由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論