湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第1頁
湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第2頁
湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第3頁
湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第4頁
湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省株洲市茶陵縣二中2024年數(shù)學(xué)高一下期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.2.與直線垂直于點的直線的一般方程是()A. B. C. D.3.下列各角中,與角終邊相同的角是()A. B. C. D.4.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”5.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關(guān)于()對稱.A.軸 B.原點 C.直線 D.點6.過點且在兩坐標軸上截距相等的直線方程是()A. B.C.或 D.或7.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.8.高一數(shù)學(xué)興趣小組共有5人,編號為.若從中任選3人參加數(shù)學(xué)競賽,則選出的參賽選手的編號相連的概率為()A. B. C. D.9.若關(guān)于的不等式的解集為,則的取值范圍是()A. B. C. D.10.函數(shù)(,)的部分圖象如圖所示,則的值分別是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=12.已知,則與的夾角等于____.13.在中,,點在邊上,若,的面積為,則___________14.已知,則______.15.若,則的值為_______.16.在等比數(shù)列中,已知,則=________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱中,,D為AB上一點,且平面.(1)求證:;(2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,,求三樓柱的體積.18.在一個盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.19.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.20.已知等比數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列為遞增數(shù)列,數(shù)列滿足,求數(shù)列的前n項和.(3)在條件(2)下,若不等式對任意正整數(shù)n都成立,求的取值范圍.21.已知函數(shù)f(x)=2cosx(sinx﹣cosx).(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當(dāng)且僅當(dāng)時等號成立.故選:C【點睛】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值.2、A【解析】由已知可得這就是所求直線方程,故選A.3、B【解析】

給出具體角度,可以得到終邊相同角的表達式.【詳解】角終邊相同的角可以表示為,當(dāng)時,,所以答案選擇B【點睛】判斷兩角是否是終邊相同角,即判斷是否相差整數(shù)倍.4、C【解析】

結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.5、A【解析】

先利用輔助角公式將未變換后的函數(shù)解析式化簡,再根據(jù)圖象變換規(guī)律得出變換后的函數(shù)的解析式為,結(jié)合余弦函數(shù)的對稱性來進行判斷。【詳解】,函數(shù)的圖象向左平移個長度單位后得到,函數(shù)的圖象關(guān)于軸對稱,故選:A.【點睛】本題考查三角函數(shù)的圖象變換,以及三角函數(shù)的對稱性,在考查三角函數(shù)的基本性質(zhì)問題時,應(yīng)該將三角函數(shù)的解析式化為一般形式,并借助三角函數(shù)的圖象來理解。6、C【解析】

設(shè)過點A(4,1)的直線方程為y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直線方程為x+y-5=0或x-4y=0.故選C.7、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.8、A【解析】

先考慮從個人中選取個人參加數(shù)學(xué)競賽的基本事件總數(shù),再分析選出的參賽選手的編號相連的事件數(shù),根據(jù)古典概型的概率計算得到結(jié)果.【詳解】因為從個人中選取個人參加數(shù)學(xué)競賽的基本事件有:,共種,又因為選出的參賽選手的編號相連的事件有:,共種,所以目標事件的概率為.故選:A.【點睛】本題考查古典概型的簡單應(yīng)用,難度較易.求解古典概型問題的常規(guī)思路:先計算出基本事件的總數(shù),然后計算出目標事件的個數(shù),目標事件的個數(shù)比上基本事件的總數(shù)即可計算出對應(yīng)的概率.9、C【解析】

根據(jù)對數(shù)的性質(zhì)列不等式,根據(jù)一元二次不等式恒成立時,判別式和開口方向的要求列不等式組,解不等式組求得的取值范圍.【詳解】由得,即恒成立,由于時,在上不恒成立,故,解得.故選:C.【點睛】本小題主要考查對數(shù)函數(shù)的性質(zhì),考查一元二次不等式恒成立的條件,屬于基礎(chǔ)題.10、A【解析】

利用,求出,再利用,求出即可【詳解】,,,則有,代入得,則有,,,又,故答案選A【點睛】本題考查三角函數(shù)的圖像問題,依次求出和即可,屬于簡單題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為。【點睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。12、【解析】

根據(jù)向量的坐標即可求出,根據(jù)向量夾角的公式即可求出.【詳解】∵,,,,∴,又,∴.故答案為:.【點睛】考查向量坐標的數(shù)量積運算,向量坐標求向量長度的方法,以及向量夾角的余弦公式,屬于基礎(chǔ)題.13、【解析】

由,的面積為可以求解出三角形,再通過,我們可以得出(兩三角形等高)再利用正弦形式表示各自面積,即能得出的值.【詳解】,的面積為,所以為等邊三角形,又所以(等高),又所以填寫2【點睛】已知三角形面積及一邊一角,我們能把形成該角的另外一邊算出,從而把三角形所有量都能計算出來(如果需要),求兩角正弦值的比值,我們更多聯(lián)想到正弦定理的公式,或面積公式.14、【解析】

由題意得出,然后在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】由題意得出.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、【解析】

把已知等式展開利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點睛】本題考查三角函數(shù)的化簡求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.16、【解析】三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2)【解析】

(1)連接交于點,連接,利用線面平行的性質(zhì)定理可得,從而可得為的中點,進而可證出(2)利用面面垂直的性質(zhì)定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質(zhì)可得,進而可得棱柱的高為,利用柱體的體積公式即可求解.【詳解】(1)連接交于點,連接,如圖:由平面,且平面平面,所以,由為的中點,所以為的中點,又,(2)由四邊形是矩形,且平面平面ABC,所以平面,即三棱柱為直三棱柱,在中,,,,所以,因為直線與平面ABC所成角的正切值等于2,在中,,所以..【點睛】本題考查了線面平行的性質(zhì)定理、面面垂直的性質(zhì)定理,同時考查了線面角以及柱體的體積公式,屬于基礎(chǔ)題.18、(1);(2);(3).【解析】

(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【點睛】本題考查古典概型及其概率計算公式,考查邏輯思維能力和運算能力,屬于??碱}.19、(1)周期為π,最大值為2.(2)【解析】

(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值為2;(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,當(dāng)b=c=1時,等號成立.∴a2≥4﹣1=3,即a.則a的最小值為.【點睛】本題考查三角函數(shù)的恒等變換,余弦形函數(shù)的性質(zhì)的應(yīng)用,余弦定理和基本不等式的應(yīng)用,是中檔題.20、(1)當(dāng)時:;當(dāng)時:(2)(3)【解析】

(1)直接利用等比數(shù)列公式得到答案.(2)利用錯位相減法得到答案.(3)將不等式轉(zhuǎn)化為,根據(jù)雙勾函數(shù)求數(shù)列的最大值得到答案.【詳解】(1)當(dāng)時:當(dāng)時:(2)數(shù)列為遞增數(shù)列,,兩式相加,化簡得到(3)設(shè)原式(為奇數(shù))根據(jù)雙勾函數(shù)知:或時有最大值.時,原式時,原式故【點睛】本題考查了等比數(shù)列的通項公式,錯位相減法求前N項和,恒成立問題,將恒成立問題轉(zhuǎn)化為利用雙勾函數(shù)求數(shù)列的最大值是解題的關(guān)鍵,此題綜合性強,計算量大,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.21、(1)函數(shù)的最小正周期為π;函數(shù)的減區(qū)間為[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】

(1)利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論;(2)利用正弦函數(shù)的定義域和值域,求得的范圍,進而可得的范圍.【詳解】(1)函數(shù)f(x)=2cosx(sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論