四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第1頁
四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第2頁
四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第3頁
四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第4頁
四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都龍泉中學2025屆高一下數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知M為z軸上一點,且點M到點與點的距離相等,則點M的坐標為()A. B. C. D.2.平行四邊形中,若點滿足,,設,則()A. B. C. D.3.如圖,網(wǎng)格紙的各小格都是正方形,粗實線畫出的事一個幾何體的三視圖,則這個幾何體是()A.三棱錐 B.三棱柱 C.四棱錐 D.四棱柱4.如果成等差數(shù)列,成等比數(shù)列,那么等于()A. B. C. D.5.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.6.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或7.兩條直線和,,在同一直角坐標系中的圖象可能是()A. B.C. D.8.已知為等差數(shù)列,為其前項和.若,則()A. B. C. D.9.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度B.向左平移個單位長度C.向右平移個單位長度D.向右平移個單位長度10.設函數(shù)是定義為R的偶函數(shù),且對任意的,都有且當時,,若在區(qū)間內關于的方程恰好有3個不同的實數(shù)根,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知1,,,,4成等比數(shù)列,則______.12.已知等差數(shù)列滿足,則__________.13.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.14.已知,向量的夾角為,則的最大值為_____.15.已知為所在平面內一點,且,則_____16.已知,則的取值范圍是_______;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,長方形材料中,已知,.點為材料內部一點,于,于,且,.現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.(1)設,試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.18.已知為銳角三角形,內角A,B,C的對邊分別為a,b,c,若.(1)求C;(2)若,且的面積為,求的周長.19.已知等差數(shù)列的前項的和為,,.(1)求數(shù)列的通項公式;(2)設,記數(shù)列的前項和為,求.20.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.21.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)題意先設,再根據(jù)空間兩點間的距離公式,得到,再由點M到點與點的距離相等建立方程求解.【詳解】設根據(jù)空間兩點間的距離公式得因為點M到點與點的距離相等所以解得所以故選:C【點睛】本題主要考查了空間兩點間的距離公式,還考查了運算求解的能力,屬于基礎題.2、B【解析】

畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關系可得到,即可求出的值,進而可以得到答案.【詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【點睛】本題考查了平面向量的線性運算,考查了平面向量基本定理的應用,考查了平行四邊形的性質,屬于中檔題.3、B【解析】試題分析:由三視圖中的正視圖可知,由一個面為直角三角形,左視圖和俯視圖可知其它的面為長方形.綜合可判斷為三棱柱.考點:由三視圖還原幾何體.4、D【解析】

因為成等差數(shù)列,所以,因為成等比數(shù)列,所以,因此.故選D5、C【解析】

根據(jù)條件即可求出,從而可求出,,,然后可設與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運用,向量的模的求法,以及利用數(shù)量積求向量夾角.6、C【解析】

平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【點睛】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.7、A【解析】

由方程得出直線的截距,逐個選項驗證即可.【詳解】由截距式方程可得直線的橫、縱截距分別為,直線的橫、縱截距分別為選項A,由的圖象可得,可得直線的截距均為正數(shù),故A正確;選項B,只有當時,才有直線平行,故B錯誤;選項C,只有當時,才有直線的縱截距相等,故C錯誤;選項D,由的圖象可得,可得直線的橫截距為正數(shù),縱截距為負數(shù),由圖像不對應,故D錯誤;故選:A【點睛】本題考查了直線的截距式方程,需理解截距的定義,屬于基礎題.8、D【解析】試題分析:設等差數(shù)列的公差為,由題意得,解得,所以,故答案為D.考點:1、數(shù)列的通項公式;2、數(shù)列的前項和.9、D【解析】

試題分析:將函數(shù)的圖象向右平移,可得,故選D.考點:圖象的平移.10、D【解析】∵對于任意的x∈R,都有f(x?2)=f(2+x),∴函數(shù)f(x)是一個周期函數(shù),且T=4.又∵當x∈[?2,0]時,f(x)=?1,且函數(shù)f(x)是定義在R上的偶函數(shù),若在區(qū)間(?2,6]內關于x的方程恰有3個不同的實數(shù)解,則函數(shù)y=f(x)與y=在區(qū)間(?2,6]上有三個不同的交點,如下圖所示:又f(?2)=f(2)=3,則對于函數(shù)y=,由題意可得,當x=2時的函數(shù)值小于3,當x=6時的函數(shù)值大于3,即<3,且>3,由此解得:<a<2,故答案為(,2).點睛:方程根的問題轉化為函數(shù)的交點,利用周期性,奇偶性畫出所研究區(qū)間的圖像限制關鍵點處的大小很容易得解二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

因為1,,,,4成等比數(shù)列,根據(jù)等比數(shù)列的性質,可得,再利用,確定取值.【詳解】因為1,,,,4成等比數(shù)列,所以,所以或,又因為,所以.故答案為:2【點睛】本題主要考查等比數(shù)列的性質,還考查運算求解的能力,屬于基礎題.12、【解析】

由等差數(shù)列的性質計算.【詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【點睛】本題考查等差數(shù)列的性質,屬于基礎題.等差數(shù)列的性質如下:在等差數(shù)列中,,則.13、3【解析】

根據(jù)圖象看出周期、特殊點的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。14、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.15、【解析】

將向量進行等量代換,然后做出對應圖形,利用平面向量基本定理進行表示即可.【詳解】解:設,則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【點睛】本題考查了平面向量基本定理及其意義,兩個向量的加減法及其幾何意義,屬于中檔題.16、【解析】

本題首先可以根據(jù)向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數(shù)量積的相關性質,向量的數(shù)量積公式,考查計算能力,是簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)當時,四邊形材料的面積最小,最小值為.【解析】分析:(1)通過直角三角形的邊角關系,得出和,進而得出四邊形材料的面積的表達式,再結合已知尺寸條件,確定角的范圍.(2)根據(jù)正切的兩角差公式和換元法,化簡和整理函數(shù)表達式,最后由基本不等式,確定面積最小值及對應的點在上的位置.詳解:解:(1)在直角中,因為,,所以,所以,在直角中,因為,,所以,所以,所以,.(2)因為,令,由,得,所以,當且僅當時,即時等號成立,此時,,,答:當時,四邊形材料的面積最小,最小值為.點睛:本題考查三角函數(shù)的實際應用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,注意換元法和基本不等式的合理運用.換元法求函數(shù)的值域,通過引入新變量(輔助式,輔助函數(shù)等),把所有分散的已知條件聯(lián)系起來,將已知條件和要求的結果結合起來,把隱藏在條件中的性質顯現(xiàn)出來,或把繁瑣的表達式簡化,之后就可以利用各種常見的函數(shù)的圖象和性質或基本不等式來解決問題.常見的換元方法有代數(shù)和三角代換兩種.要特別注意原函數(shù)的自變量與新函數(shù)自變量之間的關系.18、(1);(2).【解析】

(1)根據(jù)正弦定理可求,利用特殊角三角函數(shù)可求C;(2)由和的面積公式,可求,再根據(jù)余弦定理求得解出a,b即可求的周長.【詳解】(1)因為,所以由正弦定理得,又所以,又為銳角三角形,所以.(2)因為,所以由面積公式得,.又因為,所以由余弦定理得,,所以,或,,故的周長為.【點睛】本題考查正弦定理、余弦定理的應用,三角形面積公式在解三角形中的應用,屬于基礎題.19、(1)數(shù)列的通項公式為(2)【解析】試題分析:(1)建立方程組;(2)由(1)得:進而由裂項相消法求得.試題解析:(1)設等差數(shù)列的公差為,由題意知解得.所以數(shù)列的通項公式為(2)∴20、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎知識,同時考查考生的分析問題解決問題的能力和運算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,所以,.因為,所以.…6分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論