版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西南寧市江南區(qū)三十四中學中考數學仿真試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.據浙江省統(tǒng)計局發(fā)布的數據顯示,2017年末,全省常住人口為5657萬人數據“5657萬”用科學記數法表示為A. B. C. D.2.某排球隊名場上隊員的身高(單位:)是:,,,,,.現用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數變小,方差變小 B.平均數變小,方差變大C.平均數變大,方差變小 D.平均數變大,方差變大3.在平面直角坐標系中,二次函數y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.4.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:15.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.6.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.學校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學類圖書花費9000元,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格貴5元,且購買科普書的數量比購買文學書的數量少100本.求科普類圖書平均每本的價格是多少元?若設科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1008.《九章算術》是中國傳統(tǒng)數學的重要著作,方程術是它的最高成就.其中記載:今有共買物,人出八,盈三;人出七,不足四,問人數、物價各幾何?譯文:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又會差4錢,問人數、物價各是多少?設合伙人數為x人,物價為y錢,以下列出的方程組正確的是(
)A. B. C. D.9.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進一個容量為300mL的杯子中;步驟二:將三個相同的玻璃球放入水中,結果水沒有滿;步驟三:再將一個同樣的玻璃球放入水中,結果水滿溢出.根據以上過程,推測一個玻璃球的體積在下列哪一范圍內?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下10.在“大家跳起來”的鄉(xiāng)村學校舞蹈比賽中,某校10名學生參賽成績統(tǒng)計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數是90 B.中位數是90 C.平均數是90 D.極差是1511.某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是()A. B.C. D.12.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一元二次方程x2﹣2x﹣m=0無實數根,則一次函數y=(m+1)x+m﹣1的圖象不經過第_____象限.14.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.15.已知反比例函數的圖像經過點,那么的值是__.16.二次根式中的字母a的取值范圍是_____.17.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.18.因式分解:a3b﹣ab3=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數.20.(6分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.(1)求A,B兩點間的距離(結果精確到0.1km).(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結果精確到0.1km).(參考數據:sin34°=0.56,cos34°=0.83,tan34°=0.1.)21.(6分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.22.(8分)小明和小亮為下周日計劃了三項活動,分別是看電影(記為A)、去郊游(記為B)、去圖書館(記為C).他們各自在這三項活動中任選一個,每項活動被選中的可能性相同.(1)小明選擇去郊游的概率為多少;(2)請用樹狀圖或列表法求小明和小亮的選擇結果相同的概率.23.(8分)為有效治理污染,改善生態(tài)環(huán)境,山西太原成為國內首個實現純電動出租車的城市,綠色環(huán)保的電動出租車受到市民的廣泛歡迎,給市民的生活帶來了很大的方便,下表是行駛路程在15公里以內時普通燃油出租車和純電動出租車的運營價格:車型起步公里數起步價格超出起步公里數后的單價普通燃油型313元2.3元/公里純電動型38元2元/公里張先生每天從家打出租車去單位上班(路程在15公里以內),結果發(fā)現,正常情況下乘坐純電動出租車比乘坐燃油出租車平均每公里節(jié)省0.8元,求張先生家到單位的路程.24.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.25.(10分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標出此時點P的位置.26.(12分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.[收集數據]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:甲:乙:[整理、描述數據]按如下分數段整理、描述這兩組樣本數據:學校人數成績甲乙(說明:優(yōu)秀成績?yōu)椋己贸煽優(yōu)楹细癯煽優(yōu)?)[分析數據]兩組樣本數據的平均分、中位數、眾數如下表所示:學校平均分中位數眾數甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數據可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_;(3)根據以上數據推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)27.(12分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】解:5657萬用科學記數法表示為,
故選:C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.2、A【解析】分析:根據平均數的計算公式進行計算即可,根據方差公式先分別計算出甲和乙的方差,再根據方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數為==188,方差為S2==;換人后6名隊員身高的平均數為==187,方差為S2==∵188>187,>,∴平均數變小,方差變小,故選:A.點睛:本題考查了平均數與方差的定義:一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.3、B【解析】
根據題目給出的二次函數的表達式,可知二次函數的開口向下,即可得出答案.【詳解】二次函數y=a(x﹣h)2+k(a<0)二次函數開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數性質,解題的關鍵是熟練掌握二次函數性質.4、B【解析】
可證明△DFE∽△BFA,根據相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.5、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.6、C【解析】
根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【解析】【分析】直接利用購買科普書的數量比購買文學書的數量少100本得出等式進而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.8、C【解析】【分析】分析題意,根據“每人出8錢,會多3錢;每人出7錢,又會差4錢,”可分別列出方程.【詳解】設合伙人數為x人,物價為y錢,根據題意得故選C【點睛】本題考核知識點:列方程組解應用題.解題關鍵點:找出相等關系,列出方程.9、C【解析】分析:本題可設玻璃球的體積為x,再根據題意列出不等式組求得解集得出答案即可.詳解:設玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點睛:此題考查一元一次不等式組的運用,解此類題目常常要根據題意列出不等式組,再化簡計算得出x的取值范圍.10、C【解析】
由統(tǒng)計圖中提供的數據,根據眾數、中位數、平均數、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現了5次,出現的次數最多,∴眾數是90;∵共有10個數,∴中位數是第5、6個數的平均數,∴中位數是(90+90)÷2=90;∵平均數是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.11、D【解析】分析:根據增長率為12%,7%,可表示出2017年的國內生產總值,2018年的國內生產總值;求2年的增長率,可用2016年的國內生產總值表示出2018年的國內生產總值,讓2018年的國內生產總值相等即可求得所列方程.詳解:設2016年的國內生產總值為1,∵2017年國內生產總值(GDP)比2016年增長了12%,∴2017年的國內生產總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內生產總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內生產總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內生產總值是在2017年的國內生產總值的基礎上增加的,需先算出2016年的國內生產總值.12、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、一【解析】∵一元二次方程x2-2x-m=0無實數根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函數y=(m+1)x+m-1的圖象經過二三四象限,不經過第一象限.
故答案是:一.14、【解析】
仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.15、【解析】
將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數y=的圖象經過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數圖像上的點滿足其解析式,可以結合代入法進行解答16、a≥﹣1.【解析】
根據二次根式的被開方數為非負數,可以得出關于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數為非負數是解答本題的關鍵.17、10,1,1【解析】
作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質、線段垂直平分線的性質、三角形面積公式等知識;熟練掌握勾股定理是解題的關鍵.18、ab(a+b)(a﹣b)【解析】
先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)﹣1+3;(2)30°.【解析】
(1)根據零指數冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據平行線的性質可得∠EDC=∠B=,根據三角形內角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點睛】(1)主要考查零指數冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.20、(1)1.7km;(2)8.9km;【解析】
(1)根據銳角三角函數可以表示出OA和OB的長,從而可以求得AB的長;(2)根據銳角三角函數可以表示出CD,從而可以求得此時雷達站C和運載火箭D兩點間的距離.【詳解】解:(1)由題意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC?tan34°,BO=OC?tan45°,∴AB=OB﹣OA=OC?tan45°﹣OC?tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B兩點間的距離是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此時雷達站C和運載火箭D兩點間的距離是8.9km.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解答本題的關鍵是明確題意,利用數形結合的思想和銳角三角函數解答.21、(1)答案見解析;(2)【解析】
(1)根據三角形角平分線的定義,即可得到AD;
(2)過D作于DE⊥ABE,根據角平分線的性質得到DE=CD=4,由三角形的面積公式即可得到結論.【詳解】解:(1)如圖所示,AD即為所求;
(2)如圖,過D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關定義知識是解答本題的關鍵.22、(1)13;(2)1【解析】
(1)利用概率公式直接計算即可;(2)首先根據題意列表,然后求得所有等可能的結果與小明和小亮選擇結果相同的情況,再利用概率公式即可求得答案【詳解】(1)∵小明分別是從看電影(記為A)、去郊游(記為B)、去圖書館(記為C)的一個景點去游玩,∴小明選擇去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知兩人選擇的方案共有9種等可能的結果,其中選擇同種方案有3種,所以小明和小亮的選擇結果相同的概率==.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.23、8.2km【解析】
首先設小明家到單位的路程是x千米,根據題意列出方程進行求解.【詳解】解:設小明家到單位的路程是x千米.依題意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到單位的路程是8.2千米.【點睛】本題考查一元一次方程的應用,找準等量關系是解題關鍵.24、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結論;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?cos30°=3,同理AN=3,
∴AE+AF=(AM-EM)+(AN+NF)=6.【點睛】運用了菱形的性質,解直角三角形,全等三角形的判定和性質,最值問題,等腰三角形的性質,作輔助線構造直角三角形是解題的關鍵.25、(1)詳見解析;(2).【解析】
(1)根據直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,FF+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數求解.【詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【點睛】本題考查了菱形的判定與性質以及圖形的對稱,根據菱形的對稱性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人申請與面試技巧
- 銅陵2025年安徽銅陵市公安局招聘警務輔助人員15人(二)筆試歷年參考題庫附帶答案詳解
- 2024網絡交易合同:保護消費者權益條款2篇
- 二零二五版民營醫(yī)院醫(yī)療質量管理體系認證服務合同3篇
- Module 5 Unit 2(說課稿)-2023-2024學年外研版英語八年級下冊
- 通遼2024年內蒙古庫倫旗總醫(yī)院(庫倫旗人民醫(yī)院)招聘急筆試歷年參考題庫附帶答案詳解
- 2025年中國通訊電纜保護套管行業(yè)市場運行現狀及投資戰(zhàn)略研究報告
- 2024-2029年中國潮汐能行業(yè)市場前瞻與投資戰(zhàn)略規(guī)劃分析報告
- 2024秋五年級英語上冊 Unit 6 In a nature park說課稿 人教PEP
- 2025年中國展覽器材市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 太平洋藍鯨計劃制度和基本法
- (承諾書)安防監(jiān)控售后服務承諾書范文
- 高低溫交變濕熱試驗檢測報告
- 蘇教版四年級數學下冊《全冊》完整課件ppt
- 《高一地理必修一全套課件》
- 新點軟件算量基礎知識內部培訓講義
- 幼兒園學前-《拍蚊子》教學課件設計
- 移動商務內容運營(吳洪貴)任務三 APP的品牌建立與價值提供
- 北師大版三年級數學上冊《總復習》教案及教學反思
- 新聞評論-第五章新聞評論的選題技巧課件
- 電子競技范文10篇
評論
0/150
提交評論