版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省信陽市高級中學(xué)2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的面積是,,,則()A.5 B.或1 C.5或1 D.2.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,3.若,滿足約束條件,則的取值范圍為()A. B. C. D.4.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.7.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.148.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.29.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.10.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生11.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或812.復(fù)數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為奇函數(shù),則_______.14.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.15.若函數(shù)恒成立,則實數(shù)的取值范圍是_____.16.已知,為虛數(shù)單位,且,則=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.18.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.20.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.21.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68222.(10分)甲、乙、丙三名射擊運動員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.2、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.3、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.4、C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.5、A【解析】
先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.6、B【解析】
由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當(dāng)且僅當(dāng)即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.7、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.8、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.9、B【解析】
根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.10、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.11、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題12、B【解析】
利用乘法運算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運算,考查學(xué)生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.14、【解析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【詳解】原問題等價于,當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點睛】本題主要考查了對勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.15、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時的,解關(guān)于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當(dāng)時,令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時,有最小值,,若恒成立,則,解得;當(dāng)時,恒成立;當(dāng)時,,單調(diào)遞增,,不合題意,舍去.綜上,實數(shù)的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。16、4【解析】
解:利用復(fù)數(shù)相等,可知由有.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)3;(Ⅱ).【解析】
(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點是函數(shù)圖象的一個對稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【點睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運算求解能力,屬于中檔基礎(chǔ)題.18、(1):,直線:;(2).【解析】
(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為.(2)設(shè),則,,,當(dāng)時,取得最大值為.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,掌握公式可輕松自如進行極坐標(biāo)方程與直角坐標(biāo)方程的互化.19、(1)詳見解析;(2).【解析】
(1)取中點,連,可得,結(jié)合平面EAD⊥平面ABCD,可證平面ABCD,進而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點,連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點,,平面,平面平面,;(2)設(shè)菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問題要熟練應(yīng)用等體積方法,屬于中檔題.20、(1),;(2)【解析】
(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標(biāo),通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應(yīng)用,屬于中檔題.21、(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據(jù)原始分?jǐn)?shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項分布即可求得X【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 杭州房產(chǎn)過戶合同范例
- 合作餐廳合同范例
- 天津濱海職業(yè)學(xué)院《微課制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 物品制作合同范例
- 員工工合同范例
- 大學(xué)語文合同范例
- 天府新區(qū)信息職業(yè)學(xué)院《汽車液壓與液力傳動》2023-2024學(xué)年第一學(xué)期期末試卷
- 嵩明混凝土透水磚施工方案
- 房頂漏雨合同范例
- 工廠園區(qū)出售合同范例
- 供應(yīng)鏈中斷應(yīng)急預(yù)案
- 污水處理設(shè)備供貨安裝技術(shù)服務(wù)方案
- 2024至2030年中國炔草酯數(shù)據(jù)監(jiān)測研究報告
- 辦公室裝修招標(biāo)文件范本
- 超星爾雅學(xué)習(xí)通《當(dāng)代大學(xué)生國家安全教育》章節(jié)測試答案
- 2024年廣東省廣州市白云區(qū)來穗人員服務(wù)管理局招聘歷年高頻難、易錯點500題模擬試題附帶答案詳解
- GB/T 10433-2024緊固件電弧螺柱焊用螺柱和瓷環(huán)
- (新版)高級考評員職業(yè)技能鑒定考試題庫(含答案)
- 項目農(nóng)民工考勤管理制度
- 10.2+文化自信與文明交流互鑒【中職專用】高一思想政治《中國特色社會主義》(高教版2023基礎(chǔ)模塊)
- 專項訓(xùn)練:坐標(biāo)的變化(30題)(原卷版+解析)
評論
0/150
提交評論