版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省雙流藝體中學2023-2024學年高一下數(shù)學期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數(shù)的圖象為,則下列結(jié)論正確的是()A.函數(shù)的最小正周期是B.圖象關(guān)于直線對稱C.圖象可由函數(shù)的圖象向左平移個單位長度得到D.函數(shù)在區(qū)間上是增函數(shù)2.在中,點滿足,則()A. B.C. D.3.數(shù)列的首項為,為等差數(shù)列,且(),若,,則()A. B. C. D.4.若,且,則()A. B. C. D.5.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球6.若數(shù)列{an}前8項的值各異,且an+8=an對任意n∈N*都成立,則下列數(shù)列中可取遍{an}前8項值的數(shù)列為()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}7.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù)為()A.48 B.60 C.64 D.728.已知向量,滿足且,若向量在向量方向上的投影為,則()A. B. C. D.9.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.10.若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系的說法正確的是()A. B.、異面 C. D.、沒有公共點二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,,,則公差______.12.中,內(nèi)角、、所對的邊分別是、、,已知,且,,則的面積為_____.13.計算:__________.14.若關(guān)于的不等式有解,則實數(shù)的取值范圍為________.15.函數(shù),的反函數(shù)為__________.16.若向量,則與夾角的余弦值等于_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系xOy中,已知點,,,.(1)①證明:;②證明:存在點P使得.并求出P的坐標;(2)過C點的直線將四邊形ABCD分成周長相等的兩部分,產(chǎn)生的另一個交點為E,求點E的坐標.18.在等差數(shù)列中,,(1)求的通項公式;(2)求的前n項和19.已知過點且斜率為的直線與圓:交于,兩點.(1)求斜率的取值范圍;(2)為坐標原點,求證:直線與的斜率之和為定值.20.某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,取).(1)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?21.某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):季度季度編號x銷售額y(百萬元)(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;(2)求關(guān)于的線性回歸方程,并預測該公司的銷售額.附:線性回歸方程:其中,參考數(shù)據(jù):.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用函數(shù)的周期判斷A的正誤;通過x=函數(shù)是否取得最值判斷B的正誤;利用函數(shù)的圖象的平移判斷C的正誤,利用函數(shù)的單調(diào)區(qū)間判斷D的正誤.【詳解】對于A,f(x)的最小正周期為π,判斷A錯誤;對于B,當x=,函數(shù)f(x)=sin(2×+)=1,∴選項B正確;對于C,把的圖象向左平移個單位,得到函數(shù)sin[2(x+)]=sin(2x+,∴選項C不正確.對于D,由,可得,k∈Z,所以在上不恒為增函數(shù),∴選項D錯誤;故選B.【點睛】本題考查三角函數(shù)的基本性質(zhì)的應用,函數(shù)的單調(diào)性、周期性及函數(shù)圖象變換,屬于基本知識的考查.2、D【解析】
因為,所以,即;故選D.3、B【解析】由題意可設等差數(shù)列的首項為,公差為,所以所以,所以,即=2n-8,=,所以,選B.4、A【解析】
利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎題.5、B【解析】
根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎題.6、B【解析】
數(shù)列是周期為8的數(shù)列;,;故選B7、B【解析】
由,求出,計算出數(shù)據(jù)落在區(qū)間內(nèi)的頻率,即可求解.【詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻率為,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.8、A【解析】由,即,所以,由向量在向量方向上的投影為,則,即,所以,故選A.9、A【解析】甲、乙、丙三人隨意坐下有種結(jié)果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.10、D【解析】
根據(jù)條件知:關(guān)于直線、的位置關(guān)系異面或者平行,故沒有公共點.【詳解】若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系是異面或者平行,所以、沒有公共點.故答案選D【點睛】本題考查了直線,平面的位置關(guān)系,意在考查學生的空間想象能力.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)等差數(shù)列公差性質(zhì)列式得結(jié)果.【詳解】因為,,所以.【點睛】本題考查等差數(shù)列公差,考查基本分析求解能力,屬基礎題.12、【解析】
由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點睛】本題考查正弦定理邊角互化思想的應用,考查利用余弦定理解三角形以及三角形面積公式的應用,解題時要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運算求解能力,屬于中等題.13、【解析】
分子分母同除以,即可求出結(jié)果.【詳解】因為.故答案為【點睛】本題主要考查“”型的極限計算,熟記常用做法即可,屬于基礎題型.14、【解析】
利用判別式可求實數(shù)的取值范圍.【詳解】不等式有解等價于有解,所以,故或,填.【點睛】本題考查一元二次不等式有解問題,屬于基礎題.15、【解析】
將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【詳解】因為,所以,則反函數(shù)為:且.【點睛】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.16、【解析】
利用坐標運算求得;根據(jù)平面向量夾角公式可求得結(jié)果.【詳解】本題正確結(jié)果:【點睛】本題考查向量夾角的求解,明確向量夾角的余弦值等于向量的數(shù)量積除以兩向量模長的乘積.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)①見解析;②見解析,;(2).【解析】
(1)①利用夾角公式可得;②由條件知點為四邊形外接圓的圓心,根據(jù),可得,四邊形外接圓的圓心為的中點,然后求出點的坐標;(2)根據(jù)條件可得,然后設的坐標為,根據(jù),可得的坐標.【詳解】(1)①,,,,,,,,,,;②由知,點為四邊形外接圓的圓心,,,,,四邊形外接圓的圓心為的中點,點的坐標為;(2)由兩點間的距離公式可得,,,,過點的直線將四邊形分成周長相等的兩部分,,設的坐標為,則,,,,點的坐標為.【點睛】本題考查向量的夾角公式、向量相等、向量的運算性質(zhì)、兩點間的距離公式等,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.18、(1);(2)【解析】試題分析:(1)根據(jù)已知數(shù)列為等差數(shù)列,結(jié)合數(shù)列的性質(zhì)可知:前3項和,所以,又因為,所以公差,再根據(jù)等差數(shù)列通項公式,可以求得.本問考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì),屬于對基礎知識的考查,為容易題,要求學生必須掌握.(2)由于為等差數(shù)列,所以可以根據(jù)重要結(jié)論得知:數(shù)列為等比數(shù)列,可以根據(jù)等比數(shù)列的定義進行證明,即,符合等比數(shù)列定義,因此數(shù)列是等比數(shù)列,首項為,公比為2,所以問題轉(zhuǎn)化為求以4為首項,2為公比的等比數(shù)列的前n項和,根據(jù)公式有.本問考查等比數(shù)列定義及前n項和公式.屬于對基礎知識的考查.試題解析:(1)又(2)由(1)知得:是以4為首項2為公比的等比數(shù)列考點:1.等差數(shù)列;2.等比數(shù)列.19、(1)(2)見解析【解析】
(1)根據(jù)圓心到直線的距離小于半徑得到答案.(2)聯(lián)立直線與圓方程:.韋達定理得計算,化簡得到答案.【詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯(lián)立直線與圓方程:.消去整理得.設,,根據(jù)韋達定理得.則.∴直線與的斜率之和為定值1.【點睛】本題考查了斜率的取值范圍,圓錐曲線的定值問題,意在考查學生的計算能力.20、(1)選擇C;(2)第4或第5年.【解析】
(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設為第年內(nèi)樹木生長的高度,先求出,設,則,.再利用分析函數(shù)的單調(diào)性,分析函數(shù)的圖像得解.【詳解】(1)由題意可知,A、B、C三種樹木隨著時間的增加,高度也在增加,6年末:A樹木的高度為(米):B樹木的高度為(米):C樹木的高度為(米),所以選擇C樹木.(2)設為第年內(nèi)樹木生長的高度,則,所以,,.設,則,.令,因為在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),所以當時,取得最小值,從而取得最大值,此時,解得,因為,,故的可能值為3或4,又,,即.因此,種植后第4或第5年內(nèi)該樹木生長最快.【點睛】本題主要考查等差數(shù)列和等比數(shù)列求和,考查函數(shù)的圖像和性質(zhì)的應用,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于難題.21、(1);(2)關(guān)于的線性回歸方程為,預測該公司的銷售額為百萬元.【解析】
(1)列舉出所有的基本事件,并確定事件“這個季度的銷售額都超過千萬元”然后利用古典概型的概率公式可計算出所求事件的概率;(2)計算出和的值,然后將表格中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色建筑鋼筋綁扎與回收利用合同4篇
- 江蘇省無錫市錫山區(qū)2019-2020學年八年級下學期期中物理試題【含答案、解析】
- 2025版房屋抵押貸款風險評估與咨詢服務合同4篇
- 股權(quán)代持合同簽訂與解除的法律要點2025年合同2篇
- 江西省贛州市瑞金市2024-2025學年八年級上學期期末考試道德與法治試題(含答案)
- 廣東省茂名市電白區(qū)2024-2025學年八年級上學期期末地理試卷(含答案)
- 固體飲料行業(yè)的融資模式與投資機會分析報告考核試卷
- 2025版企業(yè)知識產(chǎn)權(quán)保護委托合同范本指南3篇
- 東南歐eMAG知識百科 2025
- 2001年江蘇南通中考滿分作文《我發(fā)現(xiàn)女孩也可做“太陽”》
- 《健康體檢知識》課件
- 蘇少版七年級美術(shù)下冊 全冊
- 名表買賣合同協(xié)議書
- JTG-T-F20-2015公路路面基層施工技術(shù)細則
- 2024年遼寧石化職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫附答案
- 中西方校服文化差異研究
- 《子宮肉瘤》課件
- 《準媽媽衣食住行》課件
- 給男友的道歉信10000字(十二篇)
- 客人在酒店受傷免責承諾書范本
- 練字本方格模板
評論
0/150
提交評論