寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題含解析_第1頁
寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題含解析_第2頁
寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題含解析_第3頁
寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題含解析_第4頁
寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寧夏石嘴山一中2024年高一數(shù)學第二學期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知各項均不為零的數(shù)列,定義向量,,.下列命題中真命題是()A.若對任意的,都有成立,則數(shù)列是等差數(shù)列B.若對任意的,都有成立,則數(shù)列是等比數(shù)列C.若對任意的,都有成立,則數(shù)列是等差數(shù)列D.若對任意的,都有成立,則數(shù)列是等比數(shù)列2.問題:①有1000個乒乓球分別裝在3個箱子內,其中紅色箱子內有500個,藍色箱子內有200個,黃色箱子內有300個,現(xiàn)從中抽取一個容量為100的樣本;②從20名學生中選出3名參加座談會.方法:Ⅰ.隨機抽樣法Ⅱ.系統(tǒng)抽樣法Ⅲ.分層抽樣法.其中問題與方法能配對的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ3.若點,直線過點且與線段相交,則的斜率的取值范圍是()A.或B.或C.D.4.已知兩個等差數(shù)列,的前項和分別為,,若對任意的正整數(shù),都有,則等于()A.1 B. C. D.5.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.6.如圖,某人在點處測得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進30米到達處,測得塔頂?shù)难鼋菫椋瑒t塔高為()A.20米 B.15米 C.12米 D.10米7.已知,則三個數(shù)、、由小到大的順序是()A. B.C. D.8.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形9.把正方形ABCD沿對角線AC折起,當以A,B,C,D四點為頂點的三棱錐體積最大時,二面角的大小為()A.30° B.45° C.60° D.90°10.在直角中,,線段上有一點,線段上有一點,且,若,則()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在區(qū)間上,與角終邊相同的角為__________.12.已知兩條直線,將圓及其內部劃分成三個部分,則的取值范圍是_______;若劃分成的三個部分中有兩部分的面積相等,則的取值有_______種可能.13.在△ABC中,若,則△ABC的形狀是____.14.已知一圓錐的側面展開圖為半圓,且面積為S,則圓錐的底面積是_______15.若直線平分圓,則的值為________.16.某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為___________。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,已知,.(I)求數(shù)列的通項公式;(II)求.18.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?19.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.20.在銳角三角形中,分別是角的對邊,且.(1)求角的大?。唬?)若,求的取值范圍.21.設數(shù)列滿足(,),且,.(1)求和的值;(2)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)向量平行的坐標表示,得到,利用累乘法,求得,從而可作出判定,得到答案.【詳解】由題意知,向量,,,當時,可得,即,所以,所以數(shù)列表示首項為,公差為的等差數(shù)列.當,可得,即,所以,所以數(shù)列既不是等差數(shù)列,也不是等比數(shù)列.故選A.【點睛】本題主要考查了向量的平行關系的坐標表示,等差數(shù)列的定義,以及“累乘法”求解通項公式的應用,著重考查了推理與運算能力,屬于基礎題.2、B【解析】解:(1)中由于小區(qū)中各個家庭收入水平之間存在明顯差別故(1)要采用分層抽樣的方法(2)中由于總體數(shù)目不多,而樣本容量不大故(2)要采用簡單隨機抽樣故問題和方法配對正確的是:(1)Ⅲ(2)Ⅰ.故選B.3、C【解析】試題分析:畫出三點坐標可知,兩個邊界值為和,數(shù)形結合可知為.考點:1.相交直線;2.數(shù)形結合的方法;4、B【解析】

利用等差數(shù)列的性質將化為同底的,再化簡,將分子分母配湊成前n項和的形式,再利用題干條件,計算?!驹斀狻俊叩炔顢?shù)列,的前項和分別為,,對任意的正整數(shù),都有,∴.故選B.【點睛】本題考查等差數(shù)列的性質的應用,屬于中檔題。5、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長6、B【解析】

設塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎題.7、C【解析】

比較三個數(shù)、、與的大小關系,再利用指數(shù)函數(shù)的單調性可得出、的大小,可得出這三個數(shù)的大小關系.【詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【點睛】本題考查指數(shù)冪的大小關系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調性來比較大??;(2)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調性來比較大?。唬?)底數(shù)和指數(shù)都不相同時,可以利用中間值法來比較大小.8、C【解析】

由平面向量數(shù)量積運算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點睛】本題考查了平面向量數(shù)量積運算,重點考查了向量的夾角,屬基礎題.9、D【解析】

當平面ACD垂直于平面BCD時體積最大,得到答案.【詳解】取中點,連接當平面ACD垂直于平面BCD時等號成立.此時二面角為90°故答案選D【點睛】本題考查了三棱錐體積的最大值,確定高的值是解題的關鍵.10、D【解析】

依照題意采用解析法,建系求出目標向量坐標,用數(shù)量積的坐標表示即可求出結果.【詳解】如圖,以A為原點,AC,AB所在直線分別為軸建系,依題設A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點睛】本題主要考查解析法在向量中的應用,意在考查學生數(shù)形結合的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)與終邊相同的角可以表示為這一方法,即可得出結論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.12、3【解析】

易知直線過定點,再結合圖形求解.【詳解】依題意得直線過定點,如圖:若兩直線將圓分成三個部分,則直線必須與圓相交于圖中陰影部分.又,所以的取值范圍是;當直線位于時,劃分成的三個部分中有兩部分的面積相等.【點睛】本題考查直線和圓的位置關系的應用,直線的斜率,結合圖形是此題的關鍵.13、鈍角三角形【解析】

由,結合正弦定理可得,,由余弦定理可得可判斷的取值范圍【詳解】解:,由正弦定理可得,由余弦定理可得是鈍角三角形故答案為鈍角三角形.【點睛】本題主要考查了正弦定理、余弦定理的綜合應用在三角形的形狀判斷中的應用,屬于基礎題14、【解析】

由已知中圓錐的側面展開圖為半圓且面積為S,我們易確定圓錐的母線長l與底面半徑R之間的關系,進而求出底面面積即可得到結論.【詳解】如圖:設圓錐的母線長為l,底面半徑為R若圓錐的側面展開圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側面展開圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點睛】本題考查的知識點是圓錐的表面積,根據(jù)圓錐的側面展開圖為半圓,確定圓錐的母線長與底面的關系是解答本題的關鍵.15、1【解析】

把圓的一般式方程化為標準方程得到圓心,根據(jù)直線過圓心,把圓心的坐標代入到直線的方程,得到關于的方程,解方程即可【詳解】圓的標準方程為,則圓心為直線過圓心解得故答案為【點睛】本題考查的是直線與圓的位置關系,解題的關鍵是求出圓心的坐標,屬于基礎題16、3;【解析】

由三視圖還原幾何體,根據(jù)垂直關系和勾股定理可求得各棱長,從而得到最長棱的長度.【詳解】由三視圖可得幾何體如下圖所示:其中平面,,,,,,四棱錐最長棱為本題正確結果:【點睛】本題考查由三視圖還原幾何體的相關問題,關鍵是能夠準確還原幾何體中的長度和垂直關系,從而確定最長棱.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(I)將已知條件轉為關于首項和公差的方程組,解方程組求出,進而可求通項公式;(II)由已知可得構成首項為,公差為的等差數(shù)列,利用等差數(shù)列前n項和公式計算即可.【詳解】(I)因為是等差數(shù)列,,所以解得.則,.(II)構成首項為,公差為的等差數(shù)列.則【點睛】本題考查等差數(shù)列通項公式和前n項和公式的應用,屬于基礎題.18、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】

(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內,設中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設質量在內的4個芒果分別為,,,,質量在內的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計元,由于,故B方案獲利更多,應選B方案.【點睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時也考查了根據(jù)樣本估計總體的方法等.屬于中等題型.19、(1);(2)偶函數(shù),理由見解析.【解析】

(1)根據(jù)對數(shù)的真數(shù)大于零可求得和的定義域,取交集可得定義域;(2)整理可得,驗證得,得到函數(shù)為偶函數(shù).【詳解】(1)令得:定義域為令得:定義域為的定義域為(2)由題意得:,為定義在上的偶函數(shù)【點睛】本題考查函數(shù)定義域的求解、奇偶性的判斷;求解函數(shù)定義域的關鍵是明確對數(shù)函數(shù)要求真數(shù)必須大于零,且需保證構成函數(shù)的每個部分都有意義.20、(1);(2)【解析】

(1)利用正弦定理邊化角,可整理求得,根據(jù)三角形為銳角三角形可確定的取值;(2)利用正弦定理可將轉化為,利用兩角和差正弦公式、輔助角公式整理得到,根據(jù)的范圍可求得正弦型函數(shù)的值域,進而得到所求取值范圍.【詳解】(1)由正弦定理得:為銳角三角形,,即(2)由正弦定理得:為銳角三角形,,即【點睛】本題考查正弦定理邊化角的應用、邊長之和的范圍的求解問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論