




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省蘭州市城關區(qū)第一中學2025屆高一下數(shù)學期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是邊長為4的等邊三角形,為平面內一點,則的最小值是()A. B. C. D.2.在等差數(shù)列中,若,則()A.45 B.75 C.180 D.3203.已知空間中兩點,則長為()A. B. C. D.4.已知數(shù)列{an}為等差數(shù)列,,=1,若,則=()A.22019 B.22020 C.22017 D.220185.在ΔABC中,內角A,B,C的對邊分別為a,b,c.若3asinC=A.π6 B.π3 C.2π6.若不等式的解集為空集,則實數(shù)a的取值范圍是()A. B. C. D.7.函數(shù)的最大值為()A. B. C. D.8.化簡:()A. B. C. D.9.如圖是正方體的展開圖,則在這個正方體中:①與平行;②與是異面直線;③與成60°角;④與垂直.以上四個命題中,正確命題的序號是A.①②③ B.②④ C.③④ D.②③④10.已知各個頂點都在同一球面上的正方體的棱長為2,則這個球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列,,且,則________.12.設是數(shù)列的前項和,且,,則__________.13.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话耄v坐標擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標為________14.直線與圓的位置關系是______.15.某小區(qū)擬對如圖一直角△ABC區(qū)域進行改造,在三角形各邊上選一點連成等邊三角形,在其內建造文化景觀.已知,則面積最小值為____16.在等比數(shù)列中,,公比,若,則達到最大時n的值為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點E是PC的中點,求證:平面BDE;(2)若點F在線段PA上,且,當三棱錐的體積為時,求實數(shù)的值.18.如圖,已知函數(shù),點分別是的圖像與軸、軸的交點,分別是的圖像上橫坐標為的兩點,軸,共線.(1)求的值;(2)若關于的方程在區(qū)間上恰有唯一實根,求實數(shù)的取值范圍.19.已知函數(shù),(,,)的部分圖象如圖所示,其中點是圖象的一個最高點.(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.20.函數(shù).(1)求函數(shù)的周期和遞增區(qū)間;(2)若,求函數(shù)的值域.21.(1)若關于x的不等式m2x2﹣2mx>﹣x2﹣x﹣1恒成立,求實數(shù)m的取值范圍.(2)解關于x的不等式(x﹣1)(ax﹣1)>0,其中a<1.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
建立平面直角坐標系,表示出點的坐標,利用向量坐標運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【詳解】由題意,以中點為坐標原點,建立如圖所示的坐標系,則,設,則,所以,所以當時,取得最小值為,故選A.【點睛】本題主要考查了平面向量數(shù)量積的應用問題,根據(jù)條件建立坐標系,利用坐標法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】試題分析:因為數(shù)列為等差數(shù)列,且,所以,,從而,所以,而,所以,故選C.考點:等差數(shù)列的性質.3、C【解析】
根據(jù)空間中的距離公式,準確計算,即可求解,得到答案.【詳解】由空間中的距離公式,可得,故選C.【點睛】本題主要考查了空間中的距離公式,其中解答中熟記空間中的距離公式,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、A【解析】
根據(jù)等差數(shù)列的性質和函數(shù)的性質即可求出.【詳解】由題知∵數(shù)列{an}為等差數(shù)列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故選A.【點睛】本題考查了等差數(shù)列的性質和函數(shù)的性質,考查了運算能力和轉化能力,屬于中檔題,注意:若{an}為等差數(shù)列,且m+n=p+q,則,性質的應用.5、A【解析】
根據(jù)正弦定理asinA=csinC將題干等式化為3sinAsin【詳解】∵3asinC=3ccosA,所以3sinAsin【點睛】本題考查運用正弦定理求三角形內角,屬于基礎題。6、D【解析】
對分兩種情況討論分析得解.【詳解】當時,不等式為,所以滿足題意;當時,,綜合得.故選:D【點睛】本題主要考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、D【解析】
令,根據(jù)正弦型函數(shù)的性質可得,那么,可將問題轉化為二次函數(shù)在定區(qū)間上的最值問題.【詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【點睛】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉化為二次函數(shù)的值域問題.8、A【解析】
.故選A.【點睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運算.9、C【解析】
將正方體的展開圖還原為正方體后,即可得到所求正確結論.【詳解】將正方體的展開圖還原為正方體ABCD﹣EFMN后,可得AF,CN異面;BM,AN平行;連接AN,NF,可得∠FAN為AF,BM所成角,且為60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正確,故選C.【點睛】本題考查展開圖與空間幾何體的關系,考查空間線線的位置關系的判斷,屬于基礎題.10、A【解析】
先求出外接球的半徑,再求球的表面積得解.【詳解】由題得正方體的對角線長為,所以.故選A【點睛】本題主要考查多面體的外接球問題和球的表面積的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意可得{}是以+1為首項,以2為公比的等比數(shù)列,再由已知求得首項,進一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項,以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點睛】本題考查了數(shù)列的遞推式,利用構造等比數(shù)列方法求數(shù)列的通項公式,屬于中檔題.12、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【點睛】這類型題使用的公式是,一般條件是,若是消,就需當時構造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.13、,【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话?,可得,把函?shù)縱坐標擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、相交【解析】
由直線系方程可得直線過定點,進而可得點在圓內部,即可得到位置關系.【詳解】化直線方程為,令,解得,所以直線過定點,又圓的圓心坐標為,半徑,而,所以點在圓內部,故直線與圓的位置關系是相交.故答案為:相交.【點睛】本題考查直線與圓位置關系的判斷,考查直線系方程的應用,屬于基礎題.15、【解析】
設,然后分別表示,利用正弦定理建立等式用表示,從而利用三角函數(shù)的性質得到的最小值,從而得到面積的最小值.【詳解】因為,所以,顯然,,設,則,且,則,所以,在中,由正弦定理可得:,求得,其中,則,因為,所以當時,取得最大值1,則的最小值為,所以面積最小值為,【點睛】本題主要考查了利用三角函數(shù)求解實際問題的最值,涉及到正弦定理的應用,屬于難題.對于這類型題,關鍵是能夠選取恰當?shù)膮?shù)表示需求的量,從而建立相關的函數(shù),利用函數(shù)的性質求解最值.16、7【解析】
利用,得的值【詳解】因為,,所以為7.故答案為:7【點睛】本題考查等比數(shù)列的項的性質及單調性,找到與1的分界是關鍵,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ)【解析】試題分析:(Ⅰ)連接AC,設AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,進一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,因為四邊形ABCD是矩形,所以BC⊥平面PAB,則△PBC為直角三角形,所以,則直角三角形△ABD的面積為,由FM∥PO得:考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積18、(Ⅰ),(Ⅱ)或【解析】試題分析:解:(Ⅰ)建立,.(Ⅱ),結合圖象可知或.試題解析:解:(Ⅰ)①②解得,.(Ⅱ),,因為時,,由方程恰有唯一實根,結合圖象可知或.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和兩個零點計算出和的值,再由最值點以及的的范圍計算的值;(Ⅱ)先根據(jù)(Ⅰ)中解析式將表示出來,然后再利用兩角和的正弦公式計算的值.【詳解】解:(Ⅰ)由函數(shù)最大值為2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【點睛】根據(jù)三角函數(shù)圖象求解析式的步驟:(1)由最值確定的值;(2)由周期確定的值;(3)由最值點或者圖像上的點確定的取值.這里需要注意確定的值時,盡量不要選取平衡位置上的點,這樣容易造成多解的情況.20、(1)周期為,單調遞增區(qū)間為;(2).【解析】
(1)利用二倍角降冪公式、兩角差的正弦公式將函數(shù)的解析式化簡為,然后利用周期公式可計算出函數(shù)的周期,解不等式即可得出函數(shù)的單調遞增區(qū)間;(2)由計算出的取值范圍,可得出的范圍,進而可得出函數(shù)的值域.【詳解】(1),所以,函數(shù)的周期為,由,解得,因此,函數(shù)的單調遞增區(qū)間為;(2)當時,,則,,因此,函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型三角函數(shù)周期、單調區(qū)間以及值域的求解,解題的關鍵就是利用三角恒等變換思想將解析式進行化簡,考查運算求解能力,屬于中等題.21、(1)m;(2)見解析【解析】
(1)利用△<0列不等式求出實數(shù)m的取值范圍;(2)討論0<a<1、a=0和a<0,分別求出對應不等式的解集.【詳解】(1)不等式m2x2﹣2mx>﹣x2﹣x﹣1化為(m2+1)x2﹣(2m﹣1)x+1>0,由m2+1>0知,△=(2m﹣1)2﹣4(m2+1)<0,化簡得﹣4m﹣3<0,解得m,所以實數(shù)m的取值范圍是m;(2)0<a<1時,不等式(x﹣1)(ax﹣1)>0化為(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信線路建設合同
- 冷庫物流及熟食加工項目可行性研究報告寫作模板-備案審批
- 國際物流試題及答案
- 電工基礎考試題+答案
- 采購原材料合同范本
- 公共設施裝修改造工程合同
- 商鋪租賃合同協(xié)議書范本
- 度全國鋼材供應合同
- 自我血糖監(jiān)測操作
- 旅游規(guī)劃怎么做
- 水泥混凝土路面翻修施工方案詳解
- 《射雕英雄傳》好書讀后感
- DB51T 2049-2015 建筑消防設施檢測規(guī)范
- 【MOOC】風景背后的地貌學-華中師范大學 中國大學慕課MOOC答案
- 護理感動案例
- 2024版《安全生產法》考試題庫附答案(共90題)
- 企業(yè)天然氣轉讓協(xié)議書范文范本
- 帶式運輸機傳動裝置的設計
- 玩具照相機細分市場深度研究報告
- 人工智能算法與實踐-第16章 LSTM神經網絡
- 中考監(jiān)考和考務人員培訓手冊
評論
0/150
提交評論